
How to represent part-whole hierarchies

in a neural network

Geoffrey Hinton
Google Research

&
The Vector Institute

&
Department of Computer Science

University of Toronto

February 22, 2021

Abstract

This paper does not describe a working system. Instead, it presents a
single idea about representation which allows advances made by several
different groups to be combined into an imaginary system called GLOM1.
The advances include transformers, neural fields, contrastive representa-
tion learning, distillation and capsules. GLOM answers the question: How
can a neural network with a fixed architecture parse an image into a part-
whole hierarchy which has a different structure for each image? The idea
is simply to use islands of identical vectors to represent the nodes in the
parse tree. If GLOM can be made to work, it should significantly improve
the interpretability of the representations produced by transformer-like
systems when applied to vision or language.

1 Overview of the idea

There is strong psychological evidence that people parse visual scenes into part-
whole hierarchies and model the viewpoint-invariant spatial relationship be-
tween a part and a whole as the coordinate transformation between intrinsic
coordinate frames that they assign to the part and the whole [Hinton, 1979]. If
we want to make neural networks that understand images in the same way as
people do, we need to figure out how neural networks can represent part-whole

1GLOM is derived from the slang ”glom together” which may derive from the word ”ag-
glomerate”.

1

ar
X

iv
:2

10
2.

12
62

7v
1 

 [
cs

.C
V

] 
 2

5 
Fe

b 
20

21



hierarchies. This is difficult because a real neural network cannot dynamically
allocate a group of neurons to represent a node in a parse tree2. The inabil-
ity of neural nets to dynamically allocate neurons was the motivation for a
series of models that used “capsules” [Sabour et al., 2017, Hinton et al., 2018,
Kosiorek et al., 2019]. These models made the assumption that a group of neu-
rons called a capsule would be permanently dedicated to a part of a particular
type occurring in a particular region of the image. A parse tree could then be
created by activating a subset of these pre-existing, type-specific capsules and
the appropriate connections between them. This paper describes a very different
way of using capsules to represent the part-whole hierarchy in a neural net.

Even though this paper is primarily concerned with the perception of a single
static image, GLOM is most easily understood as a pipeline for processing a
sequence of frames, so a static image will be treated as a sequence of identical
frames.

The GLOM architecture3 is composed of a large number of columns4 which
all use exactly the same weights. Each column is a stack of spatially local
autoencoders that learn multiple levels of representation for what is happening
in a small image patch. Each autoencoder transforms the embedding at one level
into the embedding at an adjacent level using a multilayer bottom-up encoder
and a multilayer top-down decoder. These levels correspond to the levels in a
part-whole hierarchy. When shown an image of a face, for example, a single
column might converge on embedding vectors5 representing a nostril, a nose,
a face, and a person. Figure 1 shows how the embeddings at different levels
interact in a single column.

Figure 1 does not show the interactions between embeddings at the same
level in different columns. These are much simpler than the interactions within
a column because they do not need to implement part-whole coordinate trans-
forms. They are like the attention-weighted interactions between columns repre-
senting different word fragments in a multi-headed transformer [Devlin et al., 2018],
but they are simpler because the query, key and value vectors are all identical to
the embedding vector. The role of the inter-column interactions is to produce
islands of identical embeddings at a level by making each embedding vector at
that level regress towards other similar vectors at nearby locations. This creates
multiple local ”echo chambers” in which embeddings at a level attend mainly
to other like-minded embeddings.

2What neurons do is determined by their incoming and outgoing weights and real neurons
cannot completely change these weights rapidly.

3The GLOM architecture has some similarity to models that use the errors in top-down
predictions as their bottom-up signals [Rao and Ballard, 1999], but in a nonlinear system the
bottom-up signals cannot just carry the prediction error because the full activity vector is
required to select the right operating regime for the non-linear units.

4Each level in a column bears some resemblance to a hypercolumn as described by neuro-
scientists.

5An embedding vector is the activity vector of a capsule.

2



At each discrete time and in each column separately, the embedding at a
level is updated to be the weighted average of four contributions:

1. The prediction produced by the bottom-up neural net acting on the em-
bedding at the level below at the previous time.

2. The prediction produced by the top-down neural net acting on the em-
bedding at the level above at the previous time.

3. The embedding vector at the previous time step.

4. The attention-weighted average of the embeddings at the same level in
nearby columns at the previous time.

For a static image, the embeddings at a level should settle down over time
to produce distinct islands of nearly identical vectors. These islands should be
larger at higher levels as shown in figure 2. Using the islands of similarity to
represent the parse of an image avoids the need to allocate groups of neurons
to represent nodes of the parse tree on the fly, or to set aside groups of neurons
for all possible nodes in advance. Instead of allocating neural hardware to
represent a node in a parse tree and giving the node pointers to its ancestor
and descendants, GLOM allocates an appropriate activity vector to represent
the node and uses the same activity vector for all the locations belonging to
the node6. The ability to access the ancestor and descendants of the node is
implemented by the bottom-up and top down neural nets rather than by using
RAM to do table look-up.

Like BERT [Devlin et al., 2018], the whole system can be trained end-to-
end to reconstruct images at the final time-step from input images which have
missing regions, but the objective function also includes two regularizers that
encourage islands of near identical vectors at each level. The regularizers are
simply the agreement between the new embedding at a level and the bottom-up
and top-down predictions. Increasing this agreement facilitates the formation
of local islands.

6The idea of using similarity of vectors to do segmentation has been used in earlier work
on directional unit Boltzmann machines [Zemel et al., 1995]

3



Figure 1: Showing the bottom-up, top-down, and same level interactions among
three adjacent levels of the proposed GLOM architecture for a single column.
The blue and red arrows representing bottom-up and top-down interactions are
implemented by two different neural networks that have several hidden layers.
These networks can differ between pairs of levels but they are shared across
columns and across time-steps. The top-down net should probably use sinu-
soidal units[Sitzmann et al., 2020]. For a static image, the green arrows could
simply be scaled residual connections that implement temporal smoothing of
the embedding at each level. For video, the green connections could be neu-
ral networks that learn temporal dynamics based on several previous states of
the capsule. Interactions between the embedding vectors at the same level in
different columns are implemented by a non-adaptive, attention-weighted, local
smoother which is not shown.

4



Figure 2: A picture of the embeddings at a particular time in six nearby columns.
All of the locations shown belong to the same object and the scene level has
not yet settled on a shared vector. The complete embedding vector for each
location is shown by dividing the vector into a separate section for each level
in the part-whole hierarchy and then showing the high-dimensional embedding
vector for a level as a 2-D vector. This makes it easy to illustrate alignment
of the embedding vectors of different locations. The islands of identical vectors
at the various levels shown in the figure represent a parse tree. But islands of
identity are considerably more powerful than phrase structure grammars. They
have no difficulty representing disconnected objects as in ”Will this slow phrase
structure grammarians down?”

5



2 Introduction

This paper proposes the idea of using islands of similar vectors to represent the
parse tree of an image and then explores some of the many ramifications of this
idea by describing an imaginary system called GLOM that implements it. It
concludes with some speculations about how the brain might implement some
aspects of GLOM. But first some disclaimers:

Disclaimer1: Human vision is a sampling process in which intelligently chosen
fixation points are used to acquire the information required to perform a task
using retinas that have much higher resolution around the fixation point. The
same neural circuitry is reused for each new fixation. For the purposes of this
paper, I assume a single retina or camera with uniform resolution and only
consider what happens on the first fixation.

Disclaimer 2: To avoid cumbersome terms like “sub-sub-parts”, I will often
talk about parts and wholes as if there were only two levels in the part-whole
hierarchy. But a section of the complete embedding vector that is called a whole
when considering levels L-1 and L is also called a part when considering levels
L and L+1.

In a computer that has general purpose, random access memory, the obvious
way to represent the part-whole hierarchy for a specific image is to create a graph
structure for that particular image by dynamically allocating pieces of the mem-
ory to the nodes in the graph and giving each node pointers to the nodes it is con-
nected to. Combining this type of dynamically created graph with neural net-
work learning techniques has recently shown great promise [Bear et al., 2020],
but if the whole computer is a neural network, it is far less obvious how to rep-
resent part-whole hierarchies that are different for every image if we want the
structure of the neural net to be identical for all images. If we allow three-way
interactions in which the activity of one neuron gates the connection between
two other neurons [Hinton, 1981c], it is easy to make the connections dynamic,
but it is still unclear how to dynamically create a graph structure without the
ability to allocate neurons on the fly. It is especially difficult in a real neural
net where the knowledge is in the connection weights, which cannot easily be
copied.

One rather cumbersome solution to this problem is to set aside a group of
neurons, called a capsule, for each possible type of object or part in each region
of the image7 and to use a routing algorithm to dynamically connect a small
subset of active capsules into a graph that represents the parse of the image at
hand. The activities of neurons within a capsule can then represent properties
of a part such as the pose or deformation of a particular mouth or face.

With considerable effort, models that use capsules have achieved some suc-

7These regions can be larger for higher level parts which are more diverse but occur more
sparsely in any one image.

6



cesses in supervised and unsupervised learning on small datasets [Sabour et al., 2017,
Hinton et al., 2018, Kosiorek et al., 2019], but they have not scaled well to larger
datasets [Barham and Isard, 2019]. Capsules do not have the signature of really
practical ideas like stochastic gradient descent or transformers which just want
to work. The fundamental weakness of capsules is that they use a mixture to
model the set of possible parts. This forces a hard decision about whether a
car headlight and an eye are really different parts. If they are modeled by the
same capsule, the capsule cannot predict the identity of the whole. If they are
modeled by different capsules the similarity in their relationship to their whole
cannot be captured.

One way to avoid using a mixture for modeling the different types of part is
to have a set of identical, “universal” capsules, each of which contains enough
knowledge to model any type of part [Locatello et al., 2020, Srivastava et al., 2019,
Sun et al., 2020b]. This allows part identities to have distributed represen-
tations, which allows better sharing of knowledge between similar parts. In
neuroscience terminology, identities are value-coded rather than place-coded.
However, it creates a symmetry breaking problem in deciding which universal
object-level capsule each part should be routed to8.

A more radical version of universal capsules, which avoids both symmetry
breaking and routing, is to pre-assign a universal capsule to every location in the
image. These ubiquitous universal capsules can be used to represent whatever
happens to be at that location. An even more profligate version is to dedicate
several different levels of ubiquitous universal capsule to each location so that a
location can belong to a scene, an object, a part and a sub-part simultaneously.
This paper explores this profligate way of representing the part-whole hierarchy.
It was inspired by a biological analogy, a mathematical analogy, and recent work
on neural scene representations [Ha, 2016, Sitzmann et al., 2019].

2.1 The biological analogy

All the cells in the body have a copy of the whole genome. It seems wasteful
for brain cells to contain the instructions for behaving like liver cells but it is
convenient because it gives every cell its own private access to whatever DNA
it might choose to express. Each cell has an expression intensity9 for each gene
and the vector of expression intensities is similar for cells that form part of the
same organ.

The analogy with neural nets goes like this: Each location in the image
corresponds to a biological cell. The complete embedding vector for a location
is like the vector of gene expression intensities for a cell. The forward pass is like

8Adam Kosoriek suggested using universal capsules in 2019, but I was put off by the
symmetry breaking issue and failed to realise the importance of this approach.

9I use the word “intensity” rather than the word “level” so as not to confuse scalar inten-
sities with discrete levels in a part-whole hierarchy.

7



the developmental process that allows a new vector of gene expression intensities
to be determined by the previous vectors of expression intensities. Objects are
like organs: They are a collection of locations whose embedding vectors are all
very similar at a high level. Within an object, the embedding vectors may differ
at lower levels that correspond to the parts of the object (see figure 2).

2.2 The mathematical analogy

The Kolmogorov-Arnold superposition theorem states that every multivariate
continuous function can be represented as a superposition of continuous func-
tions of one variable10. For example, multiplication can be represented as the
sum of the logs of the individual arguments followed by exponentiation. In
machine learning terminology, when it comes to multi-argument functions, ad-
dition is all you need. This assumes, of course, that you can find the right
single-argument functions to encode the arguments of the multivariate function
you want to represent and then find the right function to decode the sum. Kol-
mogorov proved this can always be done but the encoder functions used for the
proof are so bizarre that they are of no practical relevance to neural networks.

The theorem does, however, suggest an interesting approach to combining
information coming from many different locations. Perhaps we can learn how
to encode the information at each location in such a way that simply averaging
the encodings from different locations is the only form of interaction we need11.
This idea is already used in set transformers [Lee et al., 2019] for combining
information from different members of a set. If we modify this suggestion slightly
to use an attention-weighted local average, we get a particularly simple form
of transformer in which the key, the query and the value are all the same as
the embedding itself and the only interaction between locations is attention-
weighted smoothing at each level. All of the adaptation occurs in the bottom-up
and top-down neural networks at each location, which are depicted by the blue
and red arrows in figure 1. These networks are shared across all locations and
all time-steps, but possibly not across all levels of the part-whole hierarchy.

2.3 Neural fields

Suppose we want to represent the value of a scalar variable, such as the depth or
intensity, at every point in an image. A simple way to do this is to quantize the
image locations into pixels and use an array that specifies the scalar variable at
each pixel. If the values of different pixels are related, it may be more efficient

10This solves a version of Hilbert’s 13th problem.
11This has a resemblance to variational learning [Neal and Hinton, 1997], where we start by

assuming that the log posterior distribution over the whole set of latent variables is determined
by the sum of their individual log posterior distributions and then we try to learn a model for
which this additive approximation works well.

8



to use a neural network that takes as input a code vector representing the
image and outputs an array of pixel values. This is what the decoder of an
autoencoder does. Alternatively we could use a neural network that takes as
input a code vector representing the image plus an additional input representing
an image location and outputs the predicted value at that location. This is called
a neural field 12 and this way of using neural networks has recently become
very popular [Ha, 2016, Sitzmann et al., 2020, Mildenhall et al., 2020]. Figure
3 shows a very simple example in which the intensities at a set of locations can
all be reconstructed from the same code, even though the intensities vary.

Figure 3: A very simple example of a neural field using individual pixels as the
locations. The intensities of four pixels can all be represented by the same code
(a, b) even though their intensities vary according to the function f(x) = ax+b.
The decoder has an extra input which specifies the location.

For a complicated image, the neural net could transform a code vector rep-
resenting the whole image plus a vector representing an image location into the
value at that location. But if images are composed of familiar objects and ob-
jects are composed of familiar parts it is much more efficient to use a hierarchy
of neural fields13. In GLOM, the scene-level top-down neural network converts
the scene vector plus an image location into the appropriate object vector for
that location. This vector includes information about the 3-D pose of the object
relative to the camera. All of the locations that belong to the same object are
given exactly the same object-level vector. The object-level top-down neural
network then converts an object vector plus a location into the part vector that
is appropriate for that location and so on. For example, exactly the same top-

12An early example of using neural fields is described in [Oore et al., 1997]. The ”image” is
always the same, so only the location input is needed. The 12 channels at each ”image” loca-
tion are the depths returned by 12 sonar detectors pointing in different directions. The match
between the neural net’s prediction for each location and the actual data at the robot’s current
location is used to perform a Bayesian update of the mobile robot’s probability distribution
over locations.

13A small step in this direction is simply to have a separate neural field for each type of
object. This makes it easy to represent scenes composed of familiar objects in novel arrange-
ments [Niemeyer and Geiger, 2020].

9



down network acting on exactly the same face vector is able to predict the nose
vector in some locations and the mouth vector in other locations.

2.4 Explicit versus emergent representations of the part-
whole hierarchy

In the symbolic AI representation of the part-whole hierarchy, each node has a
unique symbol or memory address, and this symbol or address has an arbitrary
relationship to the content. In GLOM, the embedding vector at a particular
level that is shared by all the locations in an island at that level plays the same
role as the address of a node in a graph, but this vector is not arbitrary. The
top-down neural network must predict the embedding vector of a part at level
L from the embedding vector of an object at level L+1. This involves using the
pose relative to the camera encoded at level L+1 and a representation of the
image location to compute where the location is within the intrinsic coordinate
frame of the object. This determines which level L part the location belongs to.

There is a very important difference between using an address bus to follow
a pointer to the representation of a part of a known object and using a top-down
neural network to compute the part vector. Unlike table-lookup, the top-down
neural net finds it much easier to deal with shapes in which there are symmetries
between the parts. Replicated parts, like the legs of a centipede for example,
add very little complexity to the neural net and this remains true even if the
legs change along the centipede, so long as they change in a predictable way.
Bilateral symmetries that align with the intrinsic coordinate frame of an object
reduce the required capacity of the top-down neural net by almost a factor of
two.

It is much harder, however, for the neural net to make use of symmetries that
do not align with the coordinate frame14, and people are generally unaware of
such symmetries. Most people, for example, are totally unaware of the threefold
rotational symmetry of a cube, despite its name, until they are forced to use
a body diagonal through the center of the cube as its intrinsic top-bottom
axis [Hinton, 1979]. They then cease to be aware of any of the right angles in
the cube because these angles no longer align with the new intrinsic coordinate
frame15.

14This is why Canonical Capsules [Sun et al., 2020b] discover the natural intrinsic coordi-
nate frames.

15Most people have enormous difficulty imagining a cube when they are forced to use a
body diagonal as the top-bottom axis. When asked to point out the corners that are not at
the two ends of this axis, they typically point out four corners arranged in a square about
halfway up the axis. This structure (two square-based pyramids stuck together base-to-base
is actually an octahedron. An octahedron is the dual of a cube with vertices for faces and
faces for vertices. So people preserve the fourfold rotational symmetry of a cube relative to
its familiar coordinate system. This suggests that the symmetry structure is one of the most
important properties encoded in the embedding vector of an object.

10



3 Some design decisions

This section discusses some decisions that need to be made when specifying the
GLOM architecture.

3.1 How many levels are there?

GLOM assumes that the part-whole hierarchy has a fixed depth. People can
deal with very deep hierarchies that have stars near the top and atomic nuclei
near the bottom. The way to handle such an enormous range is to have a flexible
mapping between entities in the world and the levels of GLOM [Hinton, 1990].
This allows the very same neurons to be used for stars at one time and for
atomic nuclei at another, which has the added advantage of facilitating analogies
between structures at very different scales like solar systems and atoms. The
recursive re-use of the neural hardware raises many interesting issues about
temporary storage and control flow [Ba et al., 2016] that will only be fleetingly
addressed here.

A reasonable number of embedding levels would be about five. This allows
for the pupil and the white of an eye to be the lowest-level sub-sub-parts in a
scene composed of objects that are people with parts that are faces and sub-parts
that are eyes. If finer details such as the dilation of the iris are required, people
probably need to remap the world onto their hardware so that, for example, the
face becomes the scene16.

One interesting question is whether the bottom-up and top-down neural
nets can be shared across levels as well as across locations. This would not work
for the lower levels of language processing where entities at different levels, like
phonemes or words, have very different properties, but vision is far more fractal.
A big advantage of sharing across levels is that the vector representation used
for a particular face when it was at the object level would then be forced to
be consistent with its representation when it was at the part level. This would
make it much easier to remap the visual world onto the hardware by simply
copying all of the vectors up or down a few levels. After having used fine details
of an eye to extract a highly informed vector representation of the eye when it
was at the object level, this same vector could then be used to represent the eye
when it was at the sub-part level17.

16The levels in the part-whole hierarchy that are represented in the infero-temporal pathway
are probably not the brain’s only representation of space. The infero-temporal pathway is used
for object recognition and there may well be other representations of the world that are used
for other purposes such as detecting ego-motion or visually maintaining balance.

17This assumes that the vector can be transported to a different column if the fixation point
changes when the face becomes the object of attention rather than the eye.

11



3.2 How fine-grained are the locations?

Locations could be as fine-grained as pixels, or they could correspond to larger
image patches [Dosovitskiy et al., 2020]. To avoid additional complexity when
explaining the basic idea of the paper, I will assume that the grid of locations
remains the same at all levels, but this is probably not the best choice.

The granularity could change at different embedding levels. If higher levels in
the part-whole hierarchy use a larger stride, the top-down neural net would need
to output multiple different predictions for the multiple lower level locations that
fall within one higher level location. Similarly, the bottom-up neural net would
need to look at all the lower-level locations that get combined at the next level
up.

One convenient way to be sensitive to a large spatial context whilst also being
able to see fine detail is to have images at several different spatial resolutions
all of which have the same number of pixels. The coarsest image conveys a
large spatial context but lacks fine detail and the finest image conveys the fine
details, but only for a small region. If the visual input is structured into multiple
images in this way, it would make sense to make peripheral locations cover larger
regions, but this paper will ignore that issue because it makes everything more
complicated.

3.3 Does the bottom-up net look at nearby locations?

Even if the granularity at different levels remains unchanged, the bottom-up
neural net could look at the embedding vectors at nearby locations. This is a
less pure version of GLOM which allows the interactions between locations to
be more complex than just averaging. The purely bottom-up pathway then re-
sembles a convolutional neural net but with the predictions for the next level up
being made by a multi-layer neural net that implements a far more complicated
function than just a matrix multiply followed by a scalar non-linearity.

The disadvantage of allowing the bottom-up net to look at other locations
is that two locations with identical representations at the part level may have
different spatial contexts. We would then lose a very nice property of the pure
version of GLOM: locations that have identical representations at the part level
make exactly the same bottom-up predictions at the object level.

By looking at other locations, the bottom-up net can reduce the uncertainty
before it predicts a distribution at the next level up and this seems like a good
thing to do. But it should be possible to get a similar reduction in uncertainty
after making the prediction when the attention-weighted smoothing combines an
uncertain bottom-up prediction from one location with the uncertain bottom-up
predictions from nearby locations. Of course, this assumes that the bottom-up
net can represent the uncertainty in its predictions and that the uncertainties in

12



different locations can be combined correctly by the attention-weighted smooth-
ing. This issue is addressed in section 9.

3.4 How does the attention work?

One of the contributors to the update of the embedding of level L at location x
is the attention-weighted average of the embeddings of level L at nearby loca-
tions at the previous time step. GLOM assumes the simplest form of attention
weighting in which the weight wxy that location x gives to the embedding at
location y is given by

wxy =
eβLx.Ly∑
z e

βLx.Lz
(1)

where . is the scalar product of the two embedding vectors, z indexes all the
locations that location x attends to at level L and β is an ”inverse temperature”
parameter that determines the sharpness of the attention. β could increase
as GLOM settles to a firm interpretation of the image. The way attention is
intended to work in GLOM has already been used successfully in a system called
”ACNe” [Sun et al., 2020a].

Pioneering work on using Markov Random Fields for image segmentation
[Geman and Geman, 1984] used the presence of a boundary between pixel x
and pixel y to prevent x from attending to y. A boundary is more than just a
big intensity difference between x and y because its existence depends on the
intensities at other locations. Similarly, early work on learning spatially coherent
properties of images used the presence of boundaries to select which expert
interpolator to use [Becker and Hinton, 1993]. Like the seashore, boundaries
have a rich life of their own and much more work needs to be done to integrate
them into GLOM, especially into its attention mechanism.

3.5 The visual input

In most neural networks, the visual input arrives at the bottom layer. In GLOM,
a patch of the raw visual input could define the bottom-level embedding at a
location by vectorizing the intensities in the image patch, but it is probably
more sensible to first apply a convolutional neural net that can see a larger
region of the image. The output of this convolutional net would then be the
primary, lowest level embedding at each location.

The convolutional net is an open loop way to solve the following inference
problem: What lowest-level embedding for that location would be able to re-
construct the pixel intensities using the learned neural field shared by all loca-
tions. Once the lowest-level embedding has been initialized, it can be refined in
a closed loop by backpropagating the reconstruction error through the neural
field [Williams et al., 1995].

13



There is no need to confine the direct visual input to the primary embedding
layer. A coarser scale convolutional net operating on a lower resolution image
could provide useful hints about the higher-level embeddings. For example, a
pale vertical oval with a darker horizontal band slightly more than halfway up
suggests one kind of face [Viola and Jones, 2004] so a convolutional net oper-
ating on coarse pixels can provide useful information to directly initialize the
higher-level embeddings18.

4 Color and texture

Consider an object whose individual parts are either entirely pale green or en-
tirely mauve. The color of a part is straightforward, but what color is the
whole object? One of the motivations for GLOM was the idea that the whole
object has a compound color which might be called ”pale-green-or-mauve” and
at the object level every location belonging to the object has exactly the same,
compound color. The object is pale-green-and-mauve all over. When deciding
which other locations at the object level to attend to, preference would be given
to locations with a similar compound color.

A similar idea applies to textures. The individual texture elements have their
own shapes and poses and spatial relationships, but an object with a textured
surface has exactly the same texture everywhere at the object level. GLOM
extends this idea to shapes. An object may have parts that are very different
from one another, but at the object level it has exactly the same compound
shape in all of the locations that it occupies.

5 Cluster discovery versus cluster formation

The EM capsule model [Hinton et al., 2018] attempts to activate capsules that
represent wholes (e.g. a face) by looking for clusters of similar vector votes
for the pose of the whole. These vector votes come from already identified
parts (e.g. a nose or mouth) and although the weights on these votes can be
modified by an iterative routing procedure the vector votes themselves remain
fixed. This is quite problematic if one of the parts has an under-determined
pose. For example, a circle representing an eye has no specific orientation and
its position in a face depends on whether it is a left or right eye. It does,
however, provide some information about the scale of the face and it makes a
unimodal prediction for the location of the face in the direction orthogonal to
the unknown line between the two eyes19.

18The visual part of the thalamus has direct connections to multiple different levels in the
hierarchy of visual areas.

19The Stacked Capsule Autoencoder model [Kosiorek et al., 2019] deals with this issue by
using a set transformer [Lee et al., 2019] to allow the parts to interact. This should allow the

14



In GLOM, the embedding vector of a location at level L-1 does not cast
an immutable vector vote for the embedding at level L. Instead, it provides
a bottom-up vector contribution to this embedding that is combined with the
vector contribution coming from level L+1 and the attention-weighted contri-
butions coming from the level L embeddings of other locations to determine the
updated level L embedding vector. The bottom-up contribution can start off
being quite vague and it can become sharper from time-step to time-step as
top-down and lateral contextual information progressively refines the level L-1
embedding of the location. The islands of similar embedding vectors at a level
can be viewed as clusters, but these clusters are not discovered in immutable
data. They are formed by the interaction between an intra-level process that
favors islands of similarity and dynamically changing suggestions coming from
the location’s embeddings at adjacent levels.

6 Replicating embedding vectors over locations

At first sight, it seems very inefficient to give a copy of the object-level embed-
ding vector to every location that belongs to an object. Compelling intuitions
that stem from programming computers with random access memory suggest
that it would be much better to have a single copy of a data-structure for the ob-
ject. These intuitions are probably misleading for neural nets that do not have
RAM, and even if RAM is available there are two good reasons for replicating
the embedding vectors over an island.

The island growing process at each level may eventually settle down to sev-
eral islands of near identical vectors, but the search for these islands needs to
be able to consider alternative clusterings of locations into islands and it also
needs to allow for negotiations between locations within an island about what
identical vector to settle on at each level. These negotiations are non-trivial
because each location is also trying to satisfy inter-level constraints that come
from its own embedding vectors at the level above and the level below and these
embeddings are also being refined at every time-step. During the search, it is
very helpful for every location to have its own version of the embedding vector
at each level. Uncertainty in the clustering can be represented by making the
embedding vector at a location be a blend of the vectors for the different clusters
that it might decide to join. This blend can be refined over time and the fact
that it lives in a high-dimensional continuous space should make optimization
easier.

Intuitively, a blend of two rather different embedding vectors is not similar
to either vector. This is true in a low-dimensional vector space, but intuitions
derived from low-dimensional spaces cannot be trusted when dealing with high-

poses and identities of the parts to be disambiguated before they attempt to activate capsules
at the next level up.

15



dimensional spaces. The average of two high-dimensional vectors is much closer
to each of those vectors than it is to a random vector. This can be understood
by thinking about the correlation between the components of a vector and the
components of its average with some other random vector. If the vectors are
high-dimensional, this correlation will be very significant 20.

A further advantage of islands of near identity is that it allows long range
interactions within a level to be sparse. If there is more sparsity at higher
levels, the interactions can be longer range without increasing the amount of
computation. For locations that belong to an island far away, all the object-
level information about that island is contained in each of its locations, so it
is only necessary to sample one of those locations for that distant island to
compete with other closer islands for a location’s attention. Of course, this
means that distant islands contribute fewer logits to the attention softmax than
closer islands, but the exponential used in the attentional softmax means that
one logit from a highly relevant distant island can out-compete multiple logits
from a closer but much less relevant island.

A simple way to choose which other locations are allowed to compete for
the attention of location x is to sample, without replacement, from a Gaussian
centered at x. Higher level embeddings can sample the same number of other
locations but from a larger Gaussian. The sampling could be done only once so
it was part of the architecture of the net. Alternatively, lacunae in the sampling
could be greatly reduced by sampling independently at each time step.

7 Learning Islands

Let us assume that GLOM is trained to reconstruct at its output the uncor-
rupted version of an image from which some regions have been removed. This
objective should ensure that information about the input is preserved during
the forward pass and if the regions are sufficiently large, it should also ensure
that identifying familiar objects will be helpful for filling in the missing regions.
To encourage islands of near identity, we need to add a regularizer and expe-
rience shows that a regularizer that simply encourages similarity between the
embeddings of nearby locations can cause the representations to collapse: All
the embedding vectors may become very small so that they are all very similar
and the reconstruction will then use very large weights to deal with the very
small scale. To prevent collapse, contrastive learning [Becker and Hinton, 1992,
Paccanaro and Hinton, 2001, van den Oord et al., 2018] uses negative examples
and tries to make representations that should agree be close while maintaining

20This explains why the first stage of a language model can convert a word like “bank”
into a single high-dimensional embedding vector rather than needing separate vectors for the
“river” and the “money” senses.

16



separation between representations which should not agree21.

Contrastive learning has been applied very successfully to learn representa-
tions of image crops [Chen et al., 2020a, Bachman et al., 2019, He et al., 2020,
Chen et al., 2020b, Tejankar et al., 2020] It learns to make the representations
of two different crops of the same image agree and the representations of two
crops from different images disagree. But this is not a sensible thing to do if our
aim is to recognize objects. If crop 1 contains objects A and B and crop 2 from
the same image contains objects B and C, it does not make sense to demand
that the representations of the two crops be the same at the object level. It does
make sense at the scene level, however. For scenes containing one prominent
object, it may be possible to recognize objects using representations that are
designed to recognize scenes, but as soon as we distinguish different levels of
embedding it becomes clear that it would be better to use a contrastive loss
function that encourages very similar representations for two locations at level
L only if they belong to the same entity at level L. If they belong to different
level L entities their level L embeddings should be significantly different.

From the point of view of a location, at all but the top level it needs to
decide which other locations its level L embedding should be similar to. It can
then learn to resemble those embeddings and be repelled from the embeddings
of locations that belong to different objects in the same or other images. Recent
work that uses the similarity of patches along a possible object trajectory to
influence whether contrastive learning should try to make them more similar has
shown very impressive performance at finding correspondences between patches
in video sequences [Jabri et al., 2020].

The obvious solution is to regularize the bottom-up and top-down neural
networks by encouraging each of them to predict the consensus opinion. This
is the weighted geometric mean of the predictions coming from the top-down
and bottom-up networks, the attention-weighted average of the embeddings at
nearby locations at the previous time-step the previous state of the embedding.
Training the inter-level predictions to agree with the consensus will clearly make
the islands found during feed-forward inference be more coherent.

An important question is whether this type of training will necessarily cause
collapse if it is not accompanied by training the inter-level predictions to be
different for negative examples that use the consensus opinions for unrelated
spatial contexts. Using layer or batch normalization should reduce the tendency
to collapse but a more important consideration may be the achievability of the
goal.

When the positive examples in contrastive learning are used to try to extract
very similar representations for different patches of the same image, the goal is
generally not achievable and the large residual errors will always be trying to

21Maintaining separation is quite different from asking representations that should be sep-
arate to be far apart. Once two representations are sufficiently different there is no further
pressure to push them even further apart.

17



make the representations collapse. If, however, an embedding at one location
is free to choose which embeddings at other locations it should resemble, the
goal can be achieved almost perfectly by learning to form islands of identical
vectors and attending almost entirely to other locations that are in the same
island. This should greatly reduce the tendency towards collapse and when
combined with the deep denoising autoencoder objective function and other
recent tricks [Grill et al., 2020, Chen and He, 2020] it may eliminate the need
for negative examples.

8 Representing coordinate transformations

When neural networks are used to represent shape, they generally work much
better if they represent the details of a shape relative to its intrinsic coordi-
nate frame rather than relative to a frame based on the camera or the world
[Taylor et al., 2007, Deng et al., 2020].

Work on the use of neural fields for generating images has established that
there are much better ways to represent the location than using two scalars
for its x and y coordinates [Sitzmann et al., 2020, Mildenhall et al., 2020]. The
product of a delta function at the location with both horizontal and vertical sine
and cosine waves of various frequencies works well. A similar representation is
used in transformers for the position of a word fragment in a sentence.

The success of highly redundant representations of location suggests that
there may also be highly redundant representations of the non-translational
degrees of freedom of a coordinate transform that work much better in a neural
net than the matrices or quaternions commonly used in computer graphics22.
Let us suppose that we would like the pose of a part (i.e. the coordinate
transform between the retina and the intrinsic frame of reference of a part)
to be represented by a vector that is a subsection of the embedding vector
representing the part. A multi-layer neural network whose weights capture the
viewpoint-invariant coordinate transform between a part and a whole can then
operate on the pose vector of the part to predict the pose vector of the whole.
If we simply flatten the 4x4 matrix representation of a pose into a vector, it is
easy to hand-design a multi-layer neural net that takes this vector as input and
produces as output a vector that corresponds to the flattened result of a matrix-
matrix multiply, provided we know what matrix to multiply by, which depends
on the identity of the part. This dependence on the part identity was the reason
for allocating a separate capsule to each type of part in earlier capsule models.
Unfortunately, the vector space of flattened 4x4 matrices does not make it easy
to represent uncertainty about some aspects of the pose and certainty about
others. This may require a much higher-dimensional representation of pose.

22The standard matrix representation uses the scale of the matrix to represent the change
in scale caused by the coordinate transform. Using the scale of the weights to represent scale
in this analog way is a particularly bad idea for neural nets.

18



Designing this representation by hand is probably inferior to using end-to-end
learning with stochastic gradient descent. Nevertheless, section 9 discusses one
approach to representing uncertainty in a neural net, just to demonstrate that
it is not a major problem.

In a universal capsule the part-identity is represented by an activity vector
rather than by the choice of which capsule to activate, so the neural net that im-
plements the appropriate part-whole coordinate transform needs to condition its
weights on the part-identity vector 23. Consequently, the entire part-level vector
of a location needs to be provided as input to the bottom-up neural net that
computes the part-whole coordinate transform. This makes the computation
much more complicated but it greatly simplifies the design of the architecture.
It means that we do not need to designate one part of the embedding vector at
a level to represent the pose and the rest to represent other aspects of the entity
at that level. All we need to do is to make sure that the neural net that predicts
the embedding at one level from the embedding below (or above) has sufficient
expressive power to apply a coordinate transform to those components of the
embedding vector that represent pose and to make this coordinate transform be
contingent on those components of the vector that represent the identity of the
part. Since this neural net is going to be learned by stochastic gradient descent,
we do not even need to keep components of the embedding vector that represent
the pose separate from the components that represent other properties of the
entity at that level: individual components can be tuned to combinations of
pose, identity, deformation, texture etc.

Entangling the representations of identity and pose may seem like a bad idea,
but how else can a bottom-up prediction from a diagonal line express the opinion
that the whole is either a tilted square or an upright diamond? To express this
distribution using activities of basis functions, we need basis functions that are
tuned to combinations of identity and pose.

Using a small matrix or quaternion to represent pose makes it easy to model
the effects of viewpoint changes using linear operations. At first sight, abandon-
ing these explicit representations of pose seems likely to compromise the ability
of a capsule to generalize across viewpoints. This would be true if each capsule
only dealt with one type of object, but universal capsules will have seen many
different types of object from many different viewpoints and any new type of
object will be well approximated by a weighted average of familiar types all of
which have learned to model the effects of viewpoint. Moreover, the weights
in this average will be the same for all viewpoints. So if a novel object is only
seen from a single viewpoint, a universal capsule may well be able to recognize
it from radically different viewpoints.

The same argument about generalization can be applied to CNNs, but there

23In stacked capsule autoencoders [Kosiorek et al., 2019] the capsule identity determines
the default object-part coordinate transform, but the transform can be modulated by a vector
that represents the deformation of the object.

19



is a subtle difference: GLOM is forced to model the coordinate transforms
between parts and wholes correctly in order to be able to make use of the
spatial relationship between one part and another by using a simple averaging
operation at the level of the whole. It is the viewpoint invariance of these part-
whole spatial relationships that makes it possible to generalize to radically new
viewpoints.

9 Representing uncertainty

It is tempting to imagine that the individual components of an embedding vector
correspond to meaningful variables such as the six degrees of freedom of the pose
of an object relative to the camera or the class of an object. This would make
it easy to understand the representation, but there is a good reason for making
the relationship between physically meaningful variables and neural activities
a little less direct: To combine multiple sources of information correctly it is
essential to take the uncertainty of each source into account.

Suppose we want to represent M-dimensional entities in such a way that dif-
ferent sources of information can contribute probability distributions over the M-
dimensional space rather than just point estimates. We could use a population
of N �M neurons each of which is tuned to a Gaussian in the M -dimensional
space [Williams and Agakov, 2002]. If we take logs, a neuron then corresponds
to a parabolic bump in the log probability. This bump could be very wide in
some directions and very narrow in others. It could even be a horizontal ridge
that is infinitely wide in some of the directions. We treat the activity of a neu-
ron as a vertical scaling of its parabolic bump and simply add up all the scaled
bumps to get a parabolic bump which represents the log of the unnormalized
Gaussian distribution represented by the population of N neurons.

Sources of information can now contribute probability distributions which
will be multiplied together by simply contributing additively to the activities of
the N neurons. If we want to keep N relatively small, there will be limitations
on the probability distributions that can be represented, but, given a budget of
N neurons, learning should be able to make good use of them to approximate
the predictive distributions that are justified by the data. If, for example, it is
possible for a part to predict the horizontal location of a whole without making
this prediction be contingent on other aspects of the pose or identity of the
whole, it would be helpful to tune a handful of the N neurons to well-spaced
values on the dimension representing the horizontal location of the whole in the
underlying M -dimensional space. The part can then contribute a Gaussian dis-
tribution along this horizontal dimension by making appropriate contributions
to this handful of neurons. The relative magnitudes of the contributions deter-
mine the mean of the Gaussian and their overall scale determines the inverse
variance of the Gaussian.

20



The assumption that the neurons have Gaussian tuning in the underlying
M -dimensional space of possible entities was just a simplification to show that
neural networks have no problem in representing Gaussian probability distribu-
tions and combining them appropriately. A much more flexible way to tune the
neurons would be to use a mixture of a Gaussian and a uniform [Hinton, 2002].
The log of this distribution is a localized bump which will be called a unibump.
The sides of a unibump splay out and eventually become horizontal when we are
far enough from the mean that the uniform completely dominates the Gaussian.
Unlike a parabolic bump which has a quadratically large gradient far from its
maximum, a unibump has zero gradient far from its maximum so it makes no
contribution to the shape of the unnormalized distribution far from its mean.
This allows unibumps to represent multi-modal probability distributions. The
sum of one set of nearby unibumps can represent one mode and the sum of
another set of unibumps that are close to one another but far from the first set
can represent another mode. Using neural activities that correspond to vertical
scalings of the unibumps, it is possible to control both the location and the
sharpness of each mode separately.

The assumption that individual neurons are tuned to a mixture of a Gaus-
sian and a uniform was just a simplification to show that neural networks can
represent multi-modal distributions. The basis functions that neurons actually
learn for representing multi-modal log probability distributions in an underlying
latent space do not need to be local in that space.

The need to represent uncertainty prevents the simplest kind of represen-
tation in which activity in a single neuron represents one dimension of an M-
dimensional entity, but it still allows neurons to have tuning curves in the M-
dimensional space. Whether it is possible for someone trying to understand the
representations to jointly infer both the underlying latent space and the tuning
curves of the neurons in that space is a very interesting open problem. But even
when it is hard to figure out what the individual neurons are doing it should
still be trivial to find islands of nearly identical vectors, so it should be easy to
see how GLOM is parsing an image or how a similar model applied to language
is parsing a sentence.

When considering how to represent uncertainty about the pose or identity
of a part, it is very important to realize that each location assumes that it
is only occupied by at most one part at each level of the hierarchy24. This
means that all the neural activities in the embedding vector at a level refer to
the same part: there is no binding problem because the binding is done via
the location. So a location can use two different neurons whose tuning curves
in the underlying M-dimensional space overlap by a lot without causing any
confusion. If we do not start by allocating different subsets of the neurons to
different locations, the broad tuning curves in the M-dimensional underlying

24We assume the visual world is opaque. Transparency, like reflections in a window of
an indoor scene superimposed on an outdoor scene would need to be handled by switching
attention between the two different scenes.

21



space that are needed for representing uncertainty will cause confusion between
the properties of different objects. That is why coarse coding, which uses a
single population of broadly tuned neurons to model several different entities at
the same time [Hinton, 1981a] cannot model uncertainty efficiently.

9.1 Combining different sources of information when up-
dating the embeddings

The embedding at each level is updated using information from the previous
time-step at adjacent levels and also at other locations on the same level. These
sources are far from independent, especially when the image is static so that
the visual input is identical at multiple time-steps. The higher-level embeddings
obviously depend on the earlier lower-level embeddings. Also, the same-level em-
beddings that contribute to the attention-weighted local average will have been
influenced by early states of the very embedding that the attention-weighted
average is trying to update. To avoid becoming over-confident it is better to
treat the different sources of information as alternative paths for computing the
embedding vector from the visual input. This justifies taking a weighted geo-
metric mean of the distributions25 predicted by the individual sources rather
than a simple product of these distributions which would be appropriate if they
were independent. For interpreting a static image with no temporal context,
the weights used for this weighted geometric mean need to change during the
iterations that occur after a new fixation. Initially the bottom-up source should
be by far the most reliable, but later on, the top-down and lateral sources will
improve. Experiments with deep belief nets[Hinton, 2006] show that gradually
increasing the weighting of top-down relative to bottom-up leads to more plau-
sible reconstructions at later times, suggesting that this will be important when
GLOM is trained as an end-to-end deep denoising autoencoder.

10 Comparisons with other neural net models

This section compares GLOM to some of the neural net models that influenced
its design.

25When taking the geometric mean of some distributions we assume that the product of
the distributions is renormalized to have a probability mass of 1.

22



10.1 Comparison with capsule models

The main advantage of GLOM, compared with capsule models 26, is that it
avoids the need to pre-allocate neurons to a discrete set of possible parts at
each level. The identity of a part becomes a vector in a continuous space of
feature activities. This allows for much more sharing of knowledge between
similar parts, like arms and legs, and much more flexibility in the number and
type of parts belonging to an object of a particular type.

A second advantage of GLOM is that it does not require dynamic routing.
Instead of routing information from a part capsule to a specific capsule that
contains knowledge about the relevant type of whole, every location that the part
occupies constructs its own vector representation of the whole. The constraint
that a part at one location only belongs to one whole is a necessary consequence
of the the fact that the alternative wholes at that location are alternative activity
vectors on the same set of neurons. Uncertainty about which of several wholes
is the correct parent of a part can still be captured by using blends of activity
vectors.

A third advantage of GLOM is that the cluster formation procedure for form-
ing islands is much better than the clustering procedure used in capsule models.
To make methods like EM work well when the number of clusters is unknown, it
is helpful to introduce split and merge operations [Ueda et al., 2000] but these
operations happen automatically during island formation. Hierarchical Bayesian
concerns about finding the correct number of clusters at an embedding level are
addressed by starting with one island per location and then reducing the num-
ber of distinctly different islands by making embedding vectors agree. This
reduction occurs in a continuous space with no need for discrete changes in the
number of clusters.

The main disadvantage of GLOM, compared to most capsule models, is that
knowledge about the shape of a specific type of object is not localized to a small
group of neurons (possibly replicated across quite large regions). Instead, the
bottom-up and top-down neural nets (which may be different for every pair of
adjacent levels) have to be replicated at every single location. For computer
implementations the replication across locations is a big advantage because it
allows a weight to be used many times each time it is retrieved from memory,
but for biological neural nets it seems very wasteful of synapses. The point of
the analogy with genes is that biology can afford to be wasteful so this objection
may not be as serious as it seems. There is, however, a more serious issue for
a biological version of GLOM: The ubiquitous universal capsules would need to
learn the very same knowledge separately at every different location and this
is statistically very inefficient. Fortunately, section 12 shows how locations can
share what their bottom-up and top-down models have learned without sharing

26Some capsule models already use universal capsules in which vectors of activity rather
than groups of neurons are used to represent the part identity, but they do not replicate these
vectors across all locations within the object [Srivastava et al., 2019].

23



any of their weights.

By allocating neurons to locations rather than to types of object or part,
GLOM eliminates a major weakness of capsule models, but it preserves most of
the good aspects of those models:

• Handling the effects of viewpoint properly: The weights of the
bottom-up and top-down neural networks capture the viewpoint-invariant
spatial relationships between parts and wholes and the neural activities
capture the viewpoint equivariant information about the pose of an object
or part.

• Coincidence filtering: Objects are recognized by using agreement be-
tween high-dimensional predictions from their parts. In GLOM, the idea
of using agreement is taken even further because it is also used to represent
objects and parts as islands of identity.

• No dynamic allocation of neurons: The part-whole hierarchy can be
represented without dynamically allocating neurons to nodes in the parse
tree.

10.2 Comparison with transformer models

The GLOM architecture shown in figure 1 can be rearranged by viewing the
vertical time-slices in figure 1 as layers in figure 4. This rearrangement of GLOM
is then equivalent to a standard version of a transformer [Vaswani et al., 2017]
but with the following changes:

• The weights are the same at every layer because GLOM is a recurrent net
and we have converted the time slices into layers.

• The attention mechanism is greatly simplified by using the embedding
vector at a level as the query, the key and also the value. The complex
interactions between different locations that are normally implemented
by attention are thus reduced to a simple, attention-weighted, smoothing
operation.

• The multiple heads used to provide more expressive power in most trans-
formers are re-purposed to implement the multiple levels of a part-whole
hierarchy and the interactions between the heads at a location are highly
structured so that a level only interacts with the adjacent levels.

• The bottom-up and top-down neural networks that compute the interac-
tions between adjacent levels perform coordinate transformations between
the distributed representations of the poses of parts and wholes and these
coordinate transformations depend on the distributed representations of
the types of the part and the whole.

24



The justification for eliminating the distinction between the query, the key, the
value and the embedding itself is as follows: Consider trying to get a potential
mouth to be corroborated by a potential nose in a transformer. The mouth
needs to ask ”is there anyone in the right spatial relationship to me who could
be a nose”. If so, please tell me to be more mouth-like. This seems to require
the mouth to send out a nose query (that includes the appropriate pose relative
to the mouth) that will match the key of the nose. The nose then needs to
send back a mouth-like value (that includes the appropriate pose relative to the
nose).

But the mouth could also be corroborated by an eye so it needs to send out a
different query that will match the key of an eye. This could be handled by using
separate heads for a mouth-looking-for-a-nose and a mouth-looking-for-an-eye
(as in categorial grammar), but that seems clumsy.

A more elegant solution (inherited from capsule models) is to use a form
of the Hough transform. The potential mouth predicts a vector for the face it
might be part of. The potential nose and eye do the same. All you need now is
agreement of the predictions at the face level so query=key=value=embedding.
The face level can then give top-down support to its parts instead of the support
coming from a value vector sent by one part to another using a coordinate
transform specific to the identities of the two parts.

25



Figure 4: This is a different way of visualizing the architecture shown in figure 1
which makes the relationship of that architecture to transformers more obvious.
The horizontal dimension which represents time in figure 1 becomes the vertical
dimension which represents layers in this figure. At each location, every layer
now has embeddings for all of the levels in the part-whole hierarchy. This
corresponds to vertically compressing the depiction of the levels within a single
time-slice in figure 1. A single forward pass through this architecture is all that
is required to interpret a static image. All of the level-specific bottom-up and
top-down neural nets are shown here as a single neural net. Figure 5 shows
the individual bottom up and top-down neural nets for this alternative way of
viewing the GLOM architecture.

26



Figure 5: A picture of two adjacent layers of GLOM for a single location (i.
e. part of a single column). During the forward pass, the embedding vector at
level L receives input from the level L-1 embedding vector in the previous layer
via a multi-layer bottom-up neural net. It also receives input from the level
L+1 embedding in the previous layer via a multi-layer top-down neural net.
The dependence on level L+1 in the previous layer implements top-down effects
during the forward pass. The level L embedding in layer t+ 1 also depends on
the level L embedding in layer t and an attention-weighted sum of the level L
embeddings at other nearby locations in layer t. These within-level interactions
are not shown.

27



10.3 Comparison with convolutional neural networks

Capsules were originally motivated by three perceived deficiencies of CNNs:

1. The pooling operation in a CNN was designed to achieve local invariance
to translation in the activity vector at the next level up. It seems better
to ask for invariance in the weights but equivariance in the activities.

2. CNNs attempt to generalize across viewpoints by using a lot of exam-
ples of different viewpoints which may be produced by augmenting the
dataset with transformed images. Computer graphics generalizes across
viewpoints by having explicit representations of the poses of objects or
parts relative to the camera. A change in viewpoint, even a very big one,
can be modeled perfectly by linear operations on these explicit poses. Us-
ing the viewpoint invariant relationship between the pose of a part and the
pose of the whole seems like a very efficient way to generalize to radically
new viewpoints. CNNs do not appear to be doing this, but appearances
can be deceptive.

3. In CNNs, the activity of a neuron is determined by the scalar product
of a weight vector with an activity vector. This is not a good way to
model covariance structure which is very important in vision. Taking the
scalar product of an activity vector with another activity vector makes
powerful operations like coincidence detection and attention much easier.
Coincidences in a high-dimensional embedding space are a good way to
filter out noise caused by occlusion or missing parts because, unlike sums,
they are very robust to the absence of some of the coinciding predictions.

The first deficiency is only apparent. It depends on a common misunder-
standing of how CNNs represent the positions of parts. The vector of channel
activities at a gridpoint can have a rate-coded representation of the position of
a part that is far more accurate than the stride between gridpoints. So when
the stride is increased at the next level by pooling it does not mean that the
position of a part is encoded less accurately. A bigger stride does not produce
representations that are more translationally invariant. Gridpoints are used to
allocate neural hardware not to represent positions. Their spacing is limited
by the fact that the neural hardware at a gridpoint assumes it will never be
representing more than one of whatever it represents, not by the accuracy with
which position needs to be represented.

Attempts to deal with the second perceived deficiency led to some inter-
esting models. The transforming autoencoder [Hinton et al., 2011] forced an
encoder to extract an explicit representation of pose in each capsule by insisting
that the reconstructed image should be a transformed version of the original
image and specifying this transformation as a matrix that multiplied whatever
matrix elements were extracted by the encoder. Similarly, the EM capsule model

28



extrapolated much better to new viewpoints when it was forced to use a matrix
to represent the relationship of a part to a whole.

Unfortunately, perception has to deal with uncertainties that are not present
in computer graphics27 and it needs to be able to represent correlated uncer-
tainties in its pose predictions so that multiple sources of information can be
combined properly. This rules out a simple matrix representation of pose. Once
we accept that distributions over the possible poses of an entity will be repre-
sented by the scales assigned to basis functions in the log probability space, it
is quite possible that CNNs actually learn to do something like this. This might
allow them to approximate Hough transforms, though this is hard to do without
taking scalar products of activity vectors.

The third deficiency can be rectified by moving to a transformer-like archi-
tecture that uses scalar products of activity vectors to modulate attention.

If you like CNNs, GLOM can be viewed as a special type of CNN that differs
from a standard CNN in the following ways:

• It only uses 1x1 convolutions (except at the front end).

• Interactions between locations are done by parameter-free averaging that
implements a coincidence filter which allows it to use a Hough transform
to activate units rather than only using matched filters.

• Rather than using a single feed-forward pass through the levels of repre-
sentation, it iterates to allow top-down influences that are implemented
by neural fields.

• It includes contrastive self-supervised learning and performs hierarchical
segmentation as a part of recognition rather than as a separate task. No
more boxes.

10.4 Representing the ISA hierarchy

An important idea in Good Old-Fashioned Artificial Intelligence (GOFAI) is
property inheritance. It is not necessary to explicitly represent that elephants
suckle their young because an elephant ISA mammal and, unless otherwise
stated, an elephant inherits this property from its more general type. A simple
way to implement property inheritance in a neural network is to make different
entities correspond to different vectors of activity on the same set of neurons.

27Even if a generative model is stochastic, it may still be certain about which stochastic
choices it made. In some more complex generative models, however, a level only specifies the
probability distributions of poses for parts at the level below and an iterative process then
reconciles these distributions [Osindero and Hinton, 2008]. This kind of generative model may
be needed for modelling very precise relationships between highly variable parts, such as two
praying hands, and it does need to be able to represent probability distributions over poses.

29



Imagine that the components of the vector that represents a concept are ordered
from very general to very specific. Mammals all have similar values for the more
general components and differ on less general components. Indian and African
elephants only differ on fairly specific components. When a neural net learns to
make the vectors for concepts have causal effects on other vectors, effects which
should be the same for all mammals but not the same for all vertebrates will
naturally be implemented by the outgoing weights of the neurons that are active
for all mammals but not for all vertebrates. This way of implementing property
inheritance makes it easy to add exceptions. The components of a vector that
are common to birds will learn weights that capture the knowledge that birds fly
and the more specific components that differentiate penguins from other birds
will learn stronger weights that overrule the general case [Hinton, 1981b].

This way of implementing property inheritance has the added advantage
that types do not need to form a tree. Dogs inherit many properties from being
canines (like wolves) but they also inherit many properties from being pets (like
cats). There is no guarantee that properties inherited from these more general,
partially overlapping classes will be consistent, but, unlike logic, neural networks
have no difficulty dealing with conflicting evidence.

At first sight, the idea of using different sections of the vector representation
of a concept to capture different levels in the ISA hierarchy conflicts with the idea
of using different sections to capture different levels in the part-whole hierarchy.
This seems problematic because hooked beak is a part of a bird but it also defines
a type of bird. The two ideas can be reconciled by first dividing the embedding
vector for a location into sections that represent different levels in the part-
whole hierarchy and then dividing each section into subsections that represent
different levels in the type hierarchy.

10.5 The relationship to 2-D Ising models

For each location separately, the embedding vectors at levels L-1 and L+1 on
the previous time-step provide input to the neurons that represent the current
embedding vector at level L. This acts like the conditioning input in a conditional
Markov Random Field: it influences the current step of the iterative, island
forming process that tries to make the embedding of the location at level L
agree with the embeddings of other locations at level L.

In a 2-D Ising model, a two-dimensional array of binary-valued spins settles
into a state in which nearby spins tend to agree so as to minimize an energy
function that favors agreement between neighboring spins. The model proposed
here resembles the 2-D Ising model because it uses a 2-D grid of image locations
but it generalizes the model in the following ways:

1. It replaces binary spins with high-dimensional real-valued vectors. The
fact that these lie in a continuous space should facilitate the search for

30



islands of agreement.

2. it replaces a single field of spins with fields at multiple levels, and allows ad-
jacent level embeddings of the same location to interact [He et al., 2004,
Saremi and Sejnowski, 2013]. The interactions between levels are quite
complicated because they involve coordinate transformations between parts
and wholes. So for each pair of adjacent embedding levels, the top-down
and bottom-up interactions at each location must be computed by a multi-
layer neural net rather than a simple weight matrix.

10.6 Comparison with other methods for removing redun-
dancy

Methods like principal components analysis remove redundancy in the data by
limiting the number of available dimensions in the representation. By contrast,
a restricted Boltzmann machine with a large number of hidden units squeezes
out redundancy by making nearly all of the exponentially many possible bi-
nary configurations of the hidden units have such high energy that they are
effectively unavailable. This is a much more flexible way of eliminating redun-
dancy [Shi and Zhu, 2007]. It can model multiple fat manifolds28 that have
different intrinsic dimensionalities and even within a fat manifold it can model
variations in the effective dimensionality in different parts of the manifold. The
island forming objective belongs to the second class of methods. At each level,
it allows for a large number of small islands if that is what the data requires
but strives to use a small number of large islands if that is possible.

11 Video

This paper focuses on using the GLOM architecture to process a single fixation
of a static image, but the architecture is motivated by the need to deal with
video and learning from video is often much easier than learning from static
images [Sabour et al., 2021], so I will briefly discuss the simplest temporal ex-
tension which is to a single fixation of a time-varying image.

To avoid confusion it may be helpful to distinguish three different types of
time:

• Event time: This is the actual time at which an event occurs.

28A manifold is a subset of the points in a space that have lower intrinsic dimensionality
than the full space. If we take the points on a manifold and add a small amount of noise that
has full dimensionality, the points no longer form a strict manifold, but they will all be close
to the manifold. Such a set of points will be said to lie on a fat manifold.

31



• Representation time: This is the actual time at which a particular
representation of an event occurs in the neural network. If the bottom-up
neural network uses a predictive model, representations of events could be
in synchrony with the events themselves or they could even precede the
events which would make catching a ball a lot easier.

• Reference time: This is the actual time that an internal representation
refers to. When a memory is retrieved, for example, the reference time
of the constructed representation is usually long before the representation
time. The reference time can also differ by a lot from the event time if
the memory is not veridical.

For a sequence of frames representing a static image, multiple time steps
can be used to settle on an appropriate set of islands at each level. But in a
dynamic image, the very same time-steps must also be used to deal with the
fact that the occupants of a location at each level can change with time.

An advantage of using islands of identical vectors to represent an object is
that motions between successive frames that are small compared to the size of
the object only require large changes to a small subset of the locations at the
object level. All of the locations that remain within the object need to change
only sightly to represent the slight change in pose of the object relative to the
camera.

If the changes in an image are small and predictable, the time-steps immedi-
ately following a change of fixation point can be used to allow the embeddings
at all levels to settle on slowly changing islands of agreement that track the
changes in the dynamic image. The lowest level embeddings may change quite
rapidly but they should receive good top-down predictions from the more stable
embeddings at the level above. Once the embeddings have formed sensible is-
lands, there is then no problem in using the very same time-step for improving
the interpretation of each frame and for keeping the embeddings locked on to
the dynamic image.

If the changes are rapid, there is no time available to iteratively settle on
a good set of embedding vectors for interpreting a specific frame. This means
that the GLOM architecture cannot correctly interpret complicated shapes if
the images are changing rapidly. Try taking a irregularly shaped potato and
throwing it up in the air in such a way that it rotates at one or two cycles per
second. Even if you smoothly track the potato, you cannot see what shape it
is.

12 Is GLOM biologically plausible?

Although GLOM is biologically inspired, it has several features that appear to
make it very implausible as a biological model. Three of these features are

32



addressed here.

• The weight-sharing between the bottom-up or top-down models in differ-
ent columns.

• The need to process negative pairs of examples for contrastive learning
without interrupting the video pipeline.

• The use of backpropagation to learn the hidden layers of the top-down
and bottom-up models.

12.1 Is the neocortex a giant distillery?

The replication of DNA in every cell is unproblematic: that is what DNA is
good at. But biologists often object to models that use weight-sharing claiming
that there is no obvious way to replicate the weights [Lillicrap et al., 2020].
GLOM, however, suggests a fairly simple way to solve this problem by using
contextual supervision. In a real brain, what we want is an efficient way of
training the bottom-up and top-down nets at a location so that they compute
the same function as the corresponding nets at other locations. There is no need
for the weights to be identical as long as corresponding nets are functionally
identical. We can achieve this using knowledge distillation [Buciluǎ et al., 2006,
Hinton et al., 2014]. For each level separately, the two students at each location
are the bottom-up and top-down neural nets. The teacher is the consensus
opinion that is a weighted geometric mean of the opinions of the two students,
the previous state of the embedding, and the attention-weighted embeddings at
other locations29.

Regressing a student’s prediction towards the consensus, allows knowledge
in the neural nets at other locations to be transferred to the student via the
attention weighted averaging. It is not as effective as sharing weights with
those other neural nets, but it works quite well [Hinton et al., 2014] and in the
long run all of the networks will converge to very similar functions if the data
distribution is translation invariant. In the long run, however, we are all dead30.
So it is interesting to consider what happens long before convergence when the
local models are all fairly different.

Suppose all of the locations that form a nose have the same embedding vector
at the part level. If they all had exactly the same bottom-up model, they would
all make exactly the same prediction for the face at the object level. But if the

29Strictly speaking, this is an example of co-distillation where the ensemble of all the stu-
dents is used as the teacher. Co-distillation was initially based on an analogy with how scien-
tists in a community learn from each other [Hinton, 2014], but the same mechanism could be
used in a community of columns. In both cases it would help to explain how a system can win
by just replicating a lot of people or columns without requiring any significant architectural
innovation.

30There are alternative facts.

33



bottom-up models at different locations are somewhat different, we will get a
strong ensemble effect at the object level: The average of all the simultaneous
bottom-up predictions for the same object in different locations will be much
better than the individual predictions.

One advantage of sharing knowledge between locations via distillation rather
than by copying weights is that the inputs to the bottom-up models at different
locations do not need to have the same structure. This makes it easy to have
a retina whose receptive fields get progressively larger further from the fovea,
which is hard to handle using weight-sharing in a convolutional net. Many other
aspects, such as the increase in chromatic aberration further from the fovea are
also easily handled. Two corresponding nets at different locations should learn
to compute the same function of the optic array even though this array is pre-
processed differently by the imaging process before being presented to the two
nets. Co-distillation also means that the top-down models do not need to receive
their location as an input since it is always the same for any given model.

Finally, using distillation to share knowledge between location specific neural
networks solves a puzzle about the discrepancy between the number of synapses
in the visual system (about 1013) compared to the number of fixations we make
in our first ten years (about 109). Conservative statisticians, concerned about
overfitting, would prefer these numbers to be the other way around31. If we
use, say, 104 columns in different locations, the bottom-up and top-down models
at one location only have about 109 synapses between them. Conversely, the
number of training examples used to learn the knowledge that is shared across
an ensemble of 104 locations is about 1013, though many of these examples are
very highly correlated.

Neural networks that have more training cases than parameters are less
magical than some of the highly over-parameterized networks in current use
but they may generalize in more predictable ways when presented with data
that lies outside their training distribution because the function they compute
has been much more highly constrained by the data.

12.2 A role for sleep in contrastive learning?

If negative examples are required, GLOM might appear less plausible as a bio-
logical model because of the added complexity of finding and processing pairs
of images that are similar when they should not be. There is, however, one
intriguing possibility that emerged from conversations with Terry Sejnowski in
1983 and 2020.

When using contrastive learning to get representations that are similar for
neighbouring video frames, the most effective negative examples are frames in

31It should help that each example allows contrastive learning at several different levels and
the target vectors for contrastive learning are much richer than a single one-of-N label

34



the same video that are nearby but not immediately adjacent. We could avoid
compromising the real-time performance of GLOM by taking it offline at night to
do the negative learning that prevents the representations from collapsing. If the
highest level embeddings have the ability to generate sequences at the highest
level, the top-down networks could be used to generate sequences of embeddings
at every level in each column. This process does not require any attention
between columns because it does not need to perform perceptual inference, so
it might be able to generate plausible sequences at a much faster rate than
the normal speed. Then we simply do the negative learning for the bottom-
up models using the same length of real-time window as is used when awake.
There is evidence that high-speed, top-down sequence generation occurs during
the spindle stage of sleep [Lee and Wilson, 2002, Nádasdy et al., 1999].

The idea that sleep is used to keep apart representations that should not
be confused is not new [Crick and Mitchison, 1983]. Hinton and Sejnowski
[Hinton and Sejnowski, 1986] even suggested that sleep could be used for follow-
ing the derivatives of the normalizing term in the negative phase of Boltzmann
machine learning. But this reincarnation of the idea has two big advantages
over Boltzmann machines. First, contrastive unsupervised learning scales much
better than Boltzmann machine learning and second, it is far more tolerant of
a temporal separation between the positive and negative phases.

Preliminary experiments using contrastive learning for MNIST digits show
that the learning still works if a large number of positive updates are followed
by a large number of negative updates. Representation collapse is fairly slow
during the positive-only learning and the representations can shrink by a sig-
nificant factor without much affecting performance. So maybe some pairs of
embeddings that ought to be well separated get too close together during the
day and are then pushed apart again at night. This would explain why complete
sleep deprivation for a few days causes such serious mental confusion32. The
experiments with MNIST also show that after a lot of positive-only learning,
performance degrades but is rapidly restored by a small amount of negative
learning.

To avoid very long periods of negative-only learning, it might be advisable
to start with a negative phase of sleep to push representations apart, and then
alternate with a positive phase using input sequences that were generated from
the top level or even from a recurrent network close to the sensory input. This
conflicts with the Crick-Mitchison theory that REM sleep is for unlearning,
but it would still be compatible with our failure to remember almost all of our
dreams if episodic memory retrieval depends on the top-level, and the top-level
simply does not learn during REM sleep because those episodes simply did not
happen.

32If sleep is just for doing extra rehearsal or for integrating the day’s experiences with older
experiences, it is not clear why complete lack of sleep for a few days has such devastating
effects.

35



12.3 Communicating error derivatives in the brain

The straightforward way to train GLOM is to ask it to fill in missing regions
of images and to backpropagate the reconstruction error through the entire
temporal settling process using backpropagation through time. The contrastive
representation learning at each level can then be viewed as an additional regular-
izer. Unfortunately, it is hard to see how a brain could backpropagate through
multiple time steps. If, however, the consensus opinion at every level can pro-
vide a sufficient teaching signal for the bottom-up and top-down models that
predict the embedding vector at that level, implementation in a brain becomes
a lot more feasible.

If we could ensure that the representations improved over time, the temporal
derivatives of neural activities could represent error derivatives and the local
learning procedure would then be spike-time dependent plasticity in which the
increase in a synapse strength is proportional to the product of the pre-synaptic
activity with the post-synaptic rate of increase of activity.33 Assuming spikes
are caused by an underlying rate variable, we can get a noisy but unbiased
estimate34 of the rate of change of this underlying rate variable by applying a
derivative filter to the post-synaptic spike train, which is exactly what STDP
does.

A recent review paper [Lillicrap et al., 2020] discusses at great length how
temporal derivatives can be used as error derivatives in order to approximate
backpropagation in a feedforward network35. The review paper assumes a sepa-
rate phase in which derivatives, in the form of activity perturbations, are allowed
to flow back from the higher levels to the lower levels. This process does not
seem plausible for a video pipeline. By contrast, the settling process of GLOM
propagates the derivatives required for learning as the temporal derivatives of
activity at all levels and the time steps required for this propagation can be the
very same time steps as are used for video frames.

For dynamic images, it may seem paradoxical that the representations just
keep getting better, but it is no more paradoxical than a surfer who just keeps
going downhill without ever changing her elevation. The surface on which the
surfer is going downhill is not the same surface. Similarly the time-slice of reality
for which the representations are forever improving is not the same time slice.
The brain surfs reality.

Unfortunately, this does not explain how to get the derivatives required for

33This fits very well with the strongly held beliefs of Jeff Hawkins and others that the brain
learns by predicting what comes next.

34Stochastic gradient descent is extremely tolerant of noise in the gradient estimates so long
as they are unbiased.

35This paper summarizes the results of simulations that show that this proposal can be
made to work quite well, but not as well as vanilla CNNs. A significant contributor to the
performance gap is the statistical inefficiency caused by the lack of weight-sharing and co-
distillation should help to fix this.

36



learning the hidden layers of the bottom-up and top-down neural networks.
Nor does it explain how the derivatives of the error signals at each level are
backpropagated through the bottom-up or top-down networks to make the ap-
propriate contributions to the derivatives at adjacent levels. Those thorny issues
are addressed in another paper which is in preparation.

13 Discussion

This paper started life as a design document for an implementation but it was
quickly hijacked by the need to justify the design decisions. I have used the
imaginary GLOM architecture as a vehicle for conveying a set of interconnected
ideas about how a neural network vision system might be organized. The ab-
sence of a working implementation makes it easier to focus on expressing the
ideas clearly and it avoids the problem of confounding the quality of the ideas
with the quality of the implementation, but it also creates serious credibility
concerns. The difference between science and philosophy is that experiments
can show that extremely plausible ideas are just wrong and extremely implau-
sible ones, like learning a entire complicated system by end-to-end gradient
decent, are just right. I am currently collaborating on a project to test out the
ability of the GLOM architecture to generalize shape recognition to radically
new viewpoints and I am hoping that other groups will also test out the ideas
presented here. This paper has gone on long enough already so I will conclude
by making some brief philosophical comments.

The idea that nodes in a parse tree are represented by islands of similar
vectors unifies two very different approaches to understanding perception. The
first approach is classical Gestalt psychology which tried to model perception
by appealing to fields and was obsessed by the idea that the whole is different
from the sum of the parts36. In GLOM, a percept really is a field and the shared
embedding vector that represents a whole really is very different from the shared
embedding vectors that represent the parts. The second approach is classical
Artificial Intelligence which models perception by appealing to structural de-
scriptions. GLOM really does have structural descriptions, and each node in
the parse tree has its own ”address” but the addresses live in the continuous
space of possible embeddings, not in the discrete space of hardware locations.

Some critics of deep learning argue that neural nets cannot deal with com-
positional hierarchies and that there needs to be a ”neurosymbolic” interface
which allows neural network front- and back-ends to hand over the higher-level
reasoning to a more symbolic system37. I believe that our primary mode of rea-
soning is by using analogies which are made possible by the similarities between
learned high-dimensional vectors, and a good analogy for the neurosymbolic in-

36Thanks to George Mandler for this more accurate translation.
37This is reminiscent of Cartesian dualism which postulated an interface between the body

and the mind.

37



terface is a car manufacturer who spends fifty years expounding the deficiencies
of electric motors but is eventually willing to use them to inject the gasoline
into the engine.

The phenomenal success of BERT [Devlin et al., 2018], combined with ear-
lier work that demonstrates that neural networks can output parse trees if that
is what the task requires [Vinyals et al., 2014], clearly demonstrates that neural
networks can parse sentences if they want to. By structuring the interactions
between the multiple heads in BERT so that they correspond to levels of repre-
sentation and by adding a contrastively learned regularizer to encourage local
islands of agreement over multiple word fragments at each level, it may be pos-
sible to show that GLOMBERT actually does parse sentences.

Acknowledgments

Many people helped me arrive at the set of ideas described in this paper.
Terry Sejnowski, Ilya Sutskever, Andrea Tagliasacchi, Jay McClelland, Chris
Williams, Rich Zemel, Sue Becker, Ruslan Salakhutdinov, Nitish Srivastava, Ti-
jmen Tieleman, Taco Cohen, Vincent Sitzmann, Adam Kosoriek, Sara Sabour,
Simon Kornblith, Ting Chen, Boyang Deng and Lala Li were particularly help-
ful. People who helped me to improve the presentation of the ideas include David
Fleet, David Ha, Michael Isard, Keith Oatley, Simon Kornblith, Lawrence Saul,
Tim Shallice, Jon Shlens, Andrea Tagliasacchi, Ashish Vaswani and several oth-
ers. I would especially like to thank Jeff Dean and David Fleet for creating the
environment at Google that made this research possible. There are probably
many highly relevant papers that I should have read but didn’t and I look for-
ward to learning about them.

References

[Ba et al., 2016] Ba, J., Hinton, G. E., Mnih, V., Leibo, J. Z., and Ionescu, C.
(2016). Using fast weights to attend to the recent past. In Lee, D., Sugiyama,
M., Luxburg, U., Guyon, I., and Garnett, R., editors, Advances in Neural
Information Processing Systems, pages 4331–4339. Curran Associates, Inc.
11

[Bachman et al., 2019] Bachman, P., Hjelm, R. D., and Buchwalter, W. (2019).
Learning representations by maximizing mutual information across views. In
Wallach, H., Larochelle, H., Beygelzimer, A., Fox, E., and Garnett, R., edi-
tors, Advances in Neural Information Processing Systems, volume 32, pages
15535–15545. Curran Associates, Inc. 17

[Barham and Isard, 2019] Barham, P. and Isard, M. (2019). Machine learning
systems are stuck in a rut. In HotOS ’19: Proceedings of the Workshop on
Hot Topics in Operating Systems, page 177–183. 7

38



[Bear et al., 2020] Bear, D. M., Fan, C., Mrowca, D., Li, Y., Alter, S., Nayebi,
A., Schwartz, J., Fei-Fei, L., Wu, J., Tenenbaum, J. B., and Yamins, D.
L. K. (2020). Learning physical graph representations from visual scenes.
arXiv:2006.12373. 6

[Becker and Hinton, 1993] Becker, S. and Hinton, G. (1993). Learning mixture
models of spatial coherence. Neural Computation, 5(2):267–277. 13

[Becker and Hinton, 1992] Becker, S. and Hinton, G. E. (1992). A self-
organizing neural network that discovers surfaces in random-dot stereograms.
Nature, 355:6356:161–163. 16

[Buciluǎ et al., 2006] Buciluǎ, C., Caruana, R., and Niculescu-Mizil, A. (2006).
Model compression. In KDD ’06: Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data mining, page
535–541. 33

[Chen et al., 2020a] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G.
(2020a). A simple framework for contrastive learning of visual represen-
tations. In Proceedings of the 37th International Conference on Machine
Learning, pages 1597–1607. 17

[Chen et al., 2020b] Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and
Hinton, G. (2020b). Big self-supervised models are strong semi-supervised
learners. arXiv:2006.10029. 17

[Chen and He, 2020] Chen, X. and He, K. (2020). Exploring simple siamese
representation learning. arXiv:2011.10566v1. 18

[Crick and Mitchison, 1983] Crick, F. and Mitchison, G. (1983). The function
of dream sleep. Nature, 304:111–114. 35

[Deng et al., 2020] Deng, B., Lewis, J. P., Jeruzalski, T., Pons-Moll, G., Hin-
ton, G., Norouzi, M., and Tagliasacchi, A. (2020). NASA: Neural articulated
shape approximation. In Proceedings of the European Conference on Com-
puter Vision. 18

[Devlin et al., 2018] Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018).
BERT: pre-training of deep bidirectional transformers for language under-
standing. In NAACL-HLT. 2, 3, 38

[Dosovitskiy et al., 2020] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weis-
senborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold,
G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2020). An image is worth 16x16
words: Transformers for image recognition at scale. arXiv:2010.11929. 12

[Geman and Geman, 1984] Geman, S. and Geman, D. (1984). Stochastic re-
laxation, Gibbs distributions, and the Bayesian restoration of images. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 6(6):721–741. 13

39



[Grill et al., 2020] Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond,
P. H., Buchatskaya, E., Doersch, C., Pires, B. A., Guo, Z. D., Azar, M. G.,
Piot, B., Kavukcuoglu, K., Munos, R., and Valko, M. (2020). Bootstrap your
own latent: A new approach to self-supervised learning. arXiv:2006.07733.
18

[Ha, 2016] Ha, D. (2016). Generating large images from latent vectors.
blog.otoro.net. 7, 9

[He et al., 2020] He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020). Mo-
mentum contrast for unsupervised visual representation learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). 17

[He et al., 2004] He, X., Zemel, R. S., and Carreira-Perpinan, M. (2004). Mul-
tiscale conditional random fields for image labeling. In Proceedings of the
2004 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. 31

[Hinton, 1979] Hinton, G. (1979). Some demonstrations of the effects of struc-
tural descriptions in mental imagery. Cognitive Science, 3(3):231–250. 1,
10

[Hinton, 1981a] Hinton, G. (1981a). Shape representation in parallel systems.
In Proceedings of the Seventh International Joint Conference on Artificial
Intelligence Vol 2, pages 1088–1096. 22

[Hinton, 1990] Hinton, G. (1990). Mapping part-whole hierarchies into connec-
tionist networks. Artificial Intelligence, 46:47–75. 11

[Hinton, 2006] Hinton, G. (2006). Grant proposal to the natural sci-
ences and engineering research council. https://www.cs.toronto.edu/ hin-
ton/absps/NSERC06.pdf. 22

[Hinton, 2014] Hinton, G. (2014). Dark knowledge. Talk at Toyota Technical
Institute, Chicago: Available on YouTube. 33

[Hinton et al., 2011] Hinton, G., Krizhevsky, A., and Wang, S. (2011). Trans-
forming auto-encoders. In Honkela, T., editor, ICANN 2011: Artificial Neural
Networks and Machine Learning, page 44–51. Springer-Verlag. 28

[Hinton and Sejnowski, 1986] Hinton, G. and Sejnowski, T. (1986). Learning
and relearning in Boltzmann machines. In Rumelhart, D. E. and McClel-
land, J. L., editors, Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition. Volume 1: Foundations, pages 282–317. MIT Press,
Cambridge, MA. 35

[Hinton et al., 2014] Hinton, G., Vinyals, O., and Dean, J. (2014). Distilling
the knowledge in a neural network. In NIPS 2014 Deep Learning Workshop.
33

40



[Hinton, 1981b] Hinton, G. E. (1981b). Implementing semantic networks in
parallel hardware. In Hinton, G. E. and Anderson, J. A., editors, Parallel
Models of Associative Memory. Lawrence Erlbaum Assoc. 30

[Hinton, 1981c] Hinton, G. E. (1981c). A parallel computation that assigns
canonical object-based frames of reference. In The 7th International Joint
Conference on Artificial Intelligence, Volume 2, page 683–685. Morgan Kauf-
mann Publishers, Inc. 6

[Hinton, 2002] Hinton, G. E. (2002). Training products of experts by minimizing
contrastive divergence. Neural Computation, 14(8):1771–1800. 21

[Hinton et al., 2018] Hinton, G. E., Sabour, S., and Frosst, N. (2018). Matrix
capsules with EM routing. In International Conference on Learning Repre-
sentations. 2, 7, 14

[Jabri et al., 2020] Jabri, A., Owens, A., and Efros, A. A. (2020). Space-time
correspondence as a contrastive random walk. arXiv:2006.14613. 17

[Kosiorek et al., 2019] Kosiorek, A., Sabour, S., Teh, Y. W., and Hinton, G. E.
(2019). Stacked capsule autoencoders. In Wallach, H., Larochelle, H.,
Beygelzimer, A., Fox, E., and Garnett, R., editors, Advances in Neural In-
formation Processing Systems, volume 32, pages 15512–15522. Curran Asso-
ciates, Inc. 2, 7, 14, 19

[Lee and Wilson, 2002] Lee, A. K. and Wilson, M. A. (2002). Memory of se-
quential experience in the hippocampus during slow wave sleep. Neuron,
36(6):1183–1194. 35

[Lee et al., 2019] Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh,
Y. W. (2019). Set transformer: A framework for attention-based permutation-
invariant neural networks. In Chaudhuri, K. and Salakhutdinov, R., editors,
Proceedings of the 36th International Conference on Machine Learning, vol-
ume 97, pages 3744–3753. 8, 14

[Lillicrap et al., 2020] Lillicrap, T., Santoro, A., Marris, L., Akerman, C., and
Hinton, G. E. (2020). Backpropagation and the brain. Nature Reviews Neu-
roscience, 21:335–346. 33, 36

[Locatello et al., 2020] Locatello, F., Weissenborn, D., Unterthiner, T., Mahen-
dran, A., Heigold, G., Uszkoreit, J., Dosovitskiy, A., and Kipf, T. (2020).
Object-centric learning with slot attention. arXiv:2006.15055. 7

[Mildenhall et al., 2020] Mildenhall, B., Srinivasan1, P. P., Tancik1, M., Bar-
ron, J. T., Ramamoorthi, R., and Ng, R. (2020). Nerf: Representing scenes
as neural radiance fields for view synthesis. In European Conference on Com-
puter Vision ECCV 2020: Computer Vision – ECCV 2020, pages 405–421.
9, 18

41



[Nádasdy et al., 1999] Nádasdy, Z., Hirase, H., Czurkó, A., Csicsvari, J., and
Buzsáki, G. (1999). Replay and time compression of recurring spike sequences
in the hippocampus. Journal of Neuroscience, 19(21):9497–9507. 35

[Neal and Hinton, 1997] Neal, R. and Hinton, G. (1997). A view of the EM
algorithm that justifies incremental, sparse, and other variants. In M.I., J.,
editor, Learning in Graphical Models, pages 355–368. Springer, Dordrecht. 8

[Niemeyer and Geiger, 2020] Niemeyer, M. and Geiger, A. (2020). Gi-
raffe: Representing scenes as compositional generative neural feature fields.
arXiv:2011.12100. 9

[Oore et al., 1997] Oore, S., Hinton, G. E., and Dudek, G. (1997). A mobile
robot that learns its place. Neural Computation, 9(3):683–699. 9

[Osindero and Hinton, 2008] Osindero, S. and Hinton, G. (2008). Modeling im-
age patches with a directed hierarchy of Markov random fields. In Platt, J.,
Koller, D., Singer, Y., and Roweis, S., editors, Advances in Neural Informa-
tion Processing Systems 20. 29

[Paccanaro and Hinton, 2001] Paccanaro, A. and Hinton, G. E. (2001). Learn-
ing distributed representations of concepts using linear relational embedding.
IEEE Transactions on Knowledge and Data Engineering, 13(2):232–244. 16

[Rao and Ballard, 1999] Rao, R. and Ballard, D. (1999). Predictive coding in
the visual cortex: a functional interpretation of some extra-classical receptive-
field effects. Nature Neuroscience, 2:79–87. 2

[Sabour et al., 2017] Sabour, S., Frosst, N., and Hinton, G. E. (2017). Dynamic
routing between capsules. In Guyon, I., Luxburg, U. V., Bengio, S., Wal-
lach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in
Neural Information Processing Systems, volume 30, pages 3856–3866. Curran
Associates, Inc. 2, 7

[Sabour et al., 2021] Sabour, S., Tagliasacchi, A., Yazdani, S., Hinton, G.,
and Fleet, D. (2021). Unsupervised part representation by flow capsules.
arXiv:2011.13920v2. 31

[Saremi and Sejnowski, 2013] Saremi, S. and Sejnowski, T. J. (2013). Hierar-
chical model of natural images and the origin of scale invariance. Proceedings
of the National Academy of Sciences, 110(8):3071–3076. 31

[Shi and Zhu, 2007] Shi, K. and Zhu, S. (2007). Mapping natural image patches
by explicit and implicit manifolds. In 2007 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–7. 31

[Sitzmann et al., 2020] Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and
Wetzstein, G. (2020). Implicit neural representations with periodic activation
functions. In Advances in Neural Information Processing Systems 33. 4, 9,
18

42



[Sitzmann et al., 2019] Sitzmann, V., Zollhoefer, M., and Wetzstein, G. (2019).
Scene representation networks: Continuous 3D-structure-aware neural scene
representations. In Wallach, H., Larochelle, H., Beygelzimer, A., Fox, E., and
Garnett, R., editors, Advances in Neural Information Processing Systems,
volume 32, pages 1121–1132. Curran Associates, Inc. 7

[Srivastava et al., 2019] Srivastava, N., Goh, H., and Salakhutdinov, R. (2019).
Geometric capsule autoencoders for 3D point clouds. arXiv:1912.03310. 7,
23

[Sun et al., 2020a] Sun, W., Jiang, W., Trulls, E., Tagliasacchi, A., and
Yi, K. M. (2020a). ACNe: Attentive context normalization for robust
permutation-equivariant learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 11286–
11295. 13

[Sun et al., 2020b] Sun, W., Tagliasacchi, A., Deng, B., Sabour, S., Yazdani,
S., Hinton, G., and Yi, K. M. (2020b). Canonical capsules: Unsupervised
capsules in canonical pose. arXiv:2012.04718. 7, 10

[Taylor et al., 2007] Taylor, G. W., Hinton, G. E., and Roweis, S. (2007). Mod-
eling human motion using binary latent variables. In Advances in Neural
Information Processing Systems, 19. MIT Press. 18

[Tejankar et al., 2020] Tejankar, A., Koohpayegani, S. A., Pillai, V., Favaro, P.,
and Pirsiavash, H. (2020). ISD: Self-supervised learning by iterative similarity
distillation. arXiv:2012.09259. 17

[Ueda et al., 2000] Ueda, N., Nakano, R., Ghahramani, Z., and Hinton, G. E.
(2000). SMEM algorithm for mixture models. Neural Computation,
12(9):2109–2128. 23

[van den Oord et al., 2018] van den Oord, A., Li, Y., and Vinyals, O.
(2018). Representation learning with contrastive predictive coding.
arXiv:1807.03748. 16

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. (2017). Atten-
tion is all you need. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H.,
Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 30, pages 5998–6008. Curran Asso-
ciates, Inc. 24

[Vinyals et al., 2014] Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever,
I., and Hinton, G. E. (2014). Grammar as a foreign language. In Neural
Information Processing Systems. 38

[Viola and Jones, 2004] Viola, P. and Jones, M. J. (2004). Robust real-time
face detection. International Journal of Computer Vision, 57:137–154. 14

43



[Williams et al., 1995] Williams, C., Revow, M., and Hinton, G. (1995). Using
a neural net to instantiate a deformable model. In Tesauro, G., Touretzky,
D. S., and Leen, T. K., editors, Advances in Neural Information Processing
Systems 7, pages 965–972. 13

[Williams and Agakov, 2002] Williams, C. K. I. and Agakov, F. V. (2002).
Products of gaussians and probabilistic minor component analysis. Neural
Computation, 14(5):1169–1182. 20

[Zemel et al., 1995] Zemel, R. S., Williams, C. K. I., and Mozer, M. C. (1995).
Lending direction to neural networks. Neural Networks, 8(4):503–512. 3

44


