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Abstract 

The last five years have seen a series of remarkable achievements in deep-neural-network-

based Artificial Intelligence (AI) research, and some modellers have argued that their 

performance compares favourably to human cognition.  Critics, however, have argued that 

processing in deep neural networks is unlike human cognition for four reasons:  they are i) 

data-hungry, ii) brittle, and iii) inscrutable black boxes that merely iv) reward-hack rather 

than learn real solutions to problems.  This paper rebuts these criticisms by exposing 

comparative bias within them, in the process extracting some more general lessons that may 

also be useful for future debates. 
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1 Introduction 

The last five years have seen a series of remarkable achievements in neural-network-based Artificial 

Intelligence (AI) research.  For example, systems based on Deep Neural Networks (DNNs) can now classify 

natural images as well as or better than humans, defeat human masters of strategy games as complex as chess, 

Go, or Starcraft II, navigate autonomous vehicles across thousands of miles of mixed terrain, and compose 

essays that are often indistinguishable from human writing.   In the short history of AI, engineering 

breakthroughs have swung the pendulum in our theoretical approach to intelligence and rationality—from 

top-down tactics that emphasize structured representations, explicit, domain-specific knowledge, and rule-

based problem solving (Newell and Simon [1976]), to bottom-up methods which locate intelligence in non-

representational sensorimotor abilities and skilful coping (Brooks [1991]).  The success of DNNs on the 

kinds of tasks touted by both extremes suggests a revival in the fortunes of connectionist approaches 

(McClelland et al. [1986]; Clark [1989], [2003]; Rogers and McClelland [2014]), a midway position that explains 

intelligence in terms of the ability of domain-general learning processes to acquire abstract representations of 

the environment from low-level perceptual input (Botvinick et al. [2017]; Hassabis et al. [2017]; Buckner 

[2018]).   

However, the DNNs behind these marquee achievements are staggeringly complex and subject to 

puzzling vulnerabilities, which has led critics to dismiss them as ‘black boxes’ exhibiting intelligence which is 

merely ersatz or alien.  To cope with this complexity, neural network researchers have suggested that we 

should engage their behaviour directly with experimental paradigms and data analysis methods derived from 

the sciences of human and animal behaviour.  Such engagement has led neuroscientists to conclude that 

DNNs are currently the most promising artificial models of perceptual similarity judgments in primates 

(Guest and Love [Unpublished]; Khaligh-Razavi and Kriegeskorte [2014]; Lake et al. [2015a]; Hong et al. 

[2016]; Kubilius et al. [2016]; Yamins and DiCarlo [2016]).  Another area of research aims to extend 

psychometric methods for intelligence testing in humans to rank the intelligence of artificial computational 

models (Hernández-Orallo [2017]).  Taking the idea that neural networks can be approached with the tools of 

animal psychology even further, the ‘Animal-AI Olympics’ has created a testbed application that assesses AI 

systems on dozens of benchmarks derived from animal cognition research (Crosby et al. [2019]; Crosby 

[2020]).  An interdisciplinary coalition of influential scientists has even called for the development of a new 

scientific field called ‘machine behaviour’ that would study AI agents in a more contextual and historically-

informed way, using methods derived from behavioural ecology and ethology (Rahwan et al. [2019]). 

In short, comparisons between natural and artificial intelligences have never been so varied and 

ambitious—nor, as we will see below, so fraught.  The capacity of DNNs to produce new forms of 

potentially intelligent behaviour and the development of new methods to evaluate their performance has 

outpaced our reflection on whether these comparisons are fair or meaningful (Guidotti et al. [2019]; Serre 



3 

 

[2019]; Zednik [2019]; Zerilli et al. [2019]).  Moreover, philosophers of science have pointed out that biases 

plague human evaluation of nonhuman behaviours, and methodological subtlety is required to temper them 

(Keeley [2004]; Buckner [2013]; Watson [2019]).  These difficulties are exacerbated when the other end of the 

comparison is an artificial system, which are often intended to reproduce only parts or idealized aspects of a 

cognitive agent (Stinson [2020]).  In his defence of his famous imitation game test, Turing himself wrestled 

with these issues; and commentators have reflected on how to avoid being unwittingly convinced by artificial 

systems that present the superficial trappings of human-like behaviour (such as human-like facial expressions 

or gestures) without the same underlying competences (Block [1981]; Proudfoot [2011]; Złotowski et al. 

[2015]; Shevlin and Halina [2019]).   

This paper suggests that this debate about fair comparisons in AI could be expedited by taking the 

lead from a century of reflection on similar questions in comparative psychology and ethology.  While these 

fields dedicated much effort to developing rigorous empirical methods to avoid anthropomorphism-driven 

false positives, they have also recently come to grips with the danger of anthropocentrism-driven false 

negatives.  In AI, by contrast, very little of this critical scepticism has yet been directed towards scoring the 

human behaviours to which AI performance is compared (though for recent exceptions, see (Canaan et al. 

[Unpublished]; Firestone [in press]; Zerilli et al. [2019]).   

To illustrate the effect of bias on the evaluation of machine behaviour, Section 2 reviews four 

popular arguments to the effect that deep learning is fundamentally unlike human learning, all focused on 

ways in which DNNs allegedly underperform humans.  We will see in Sections 3-5 that a bias called 

‘anthropofabulation’ (Buckner [2013])—which scores nonhuman performance against an inflated conception 

of human competence—threatens the validity of these comparisons.  When the same degree of critical 

scrutiny is directed towards the human side of these comparisons, our minds are also revealed to be black 

boxes plagued by many of the same vulnerabilities. To sum up, a more apt metaphor for DNNs might be an 

unflattering if revealing mirror, one which raises new questions about our own intelligence and allows us to 

see our own blemishes with unprecedented clarity.   

 

2 Four Popular Criticisms of Deep Learning Research 

This paper canvasses and rebuts four criticisms that have been commonly offered against claims that 

processing in DNNs bears similarity to human cognition:   that deep learning is i)too data-hungry, ii) 

vulnerable to adversarial examples, iii) not interpretable, and iv) merely reward-hacks rather than learns real 

solutions to problems.  These arguments feature prominently in influential critical reviews of deep learning, 

such as Lake et al. ([2017a]) and/or Marcus ([2018]).  To be clear, this is not a complete survey of arguments 

against the similarity between human cognition and the processing of DNNs.  My aim here is not to 

positively establish a deep similarity between human cognition and DNNs by rebutting all such lines of 

attack, but rather to redirect attention to the subset of those empirical questions which are more likely to 
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produce fruitful research, and to extract some general lessons about conducting fair comparisons between 

humans and artificial agents.   

Three clarifications on these aims will be useful at the outset (readers wanting to jump straight to the 

criticisms can skip ahead to 2.1).  First, though the criticisms and rebuttals discussed here will generalize to 

many other techniques in machine learning (for a relevant discussion, see Watson [2019]), for ease of 

exposition we here focus here on deep learning systems, which will be briefly characterized now. DNNs 

comprise a diverse family of network-based machine learning techniques.  As with earlier neural network 

designs, they consist of layers of simple processing nodes transmitting activation to one another along 

weighted links, usually intended to model the activity of neurons and synapses at some level of abstraction.  

In contrast to earlier, shallower neural network architectures, ‘deep’ neural networks can have anywhere from 

five to hundreds of layers in-between input and output.  Depth itself appears to have profound 

computational implications; it allows these networks to compose features hierarchically and enjoy exponential 

growth (relative to the number of layers) in their representational capacity and computational power (for a 

review of evidence for this claim, see Buckner [2019a], Section 2.1). 

Such network depth is perhaps the only feature that unites all ‘deep’ learning systems, and there are 

many other ways in which their architectures vary.  Specifically, they can vary in:  the activation functions of 

their nodes; the connectivity patterns between their layers and number of nodes in each layer (esp. decreasing 

the numbers in successive layers to impose ‘bottlenecks’ in processing); their learning rules or training regimes 

(such as backpropagation, reinforcement, or predictive learning); whether they feature recurrent links 

connecting later layers back to earlier ones; the use of components or multiple networks to simulate the 

modulatory effects of memory buffers or attentional control; and the ways in which their processing is 

tweaked (‘regularized’) to avoid overfitting spurious correlations in the training set (Schmidhuber [2015]).   

To briefly canvass some of the most popular architecture combinations, deep convolutional neural 

networks (DCNNs) have perhaps featured most prominently in marquee achievements; they leverage a 

sequence of different activation functions (convolution, pooling, and rectification) to perform hierarchical 

feature detection, and deploy mostly local connectivity between layers (LeCun et al. [2015]; Buckner [2018]).  

Deep autoencoders impose a bottleneck in the middle of a deep layer hierarchy, with an architecture 

resembling an ‘hourglass’ shape with fewer and fewer nodes in the central layers, forcing the network to learn 

compressed representations that condense categories to their ‘gist’ (Hinton and Salakhutdinov [2006]).  

Generative Adversarial Networks (GANs) have also captured the public’s attention; they involve tasking a 

second generative network to fool a primary discriminative network (often a DCNN), with the generative 

network’s nodes performing activation functions akin to the inverse of convolution and pooling 

(‘deconvolution’ and ‘unpooling’) to produce highly-detailed and realistic ‘deepfakes’ and ‘adversarial 

examples’ that can pose a security risk to discriminative networks (Goodfellow et al. [Unpublished]).  

Variational autoencoders (VAEs) combine features of GANs and deep autoencoders; they attempt to learn 
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hidden relationships between latent variables that could be used to reconstruct its training data (Kingma and 

Welling [Unpublished]).   Long Short-Term Memory networks (LSTMs) deploy recurrent connections in 

memory cells to simulate a memory for context, and can excel at processing complex sequences in input like 

grammatical structures (Hochreiter and Schmidhuber [1997]).  Transformers—the most sophisticated 

language-production deep learning architecture to date, exhibited in systems like BERT, GPT-2, and GPT-

3—modulate relatively homogeneous deep neural networks using a complex form of hierarchical attention to 

represent multiple channels of complex syntactic and semantic information relevant to predicting word 

placement in language production and automated translation (Vaswani et al. [2017]).   

As a second introductory clarification, we consider three other prominent criticisms that readers 

might be anticipating, in order to set them aside for the remainder of the paper.  Specifically, this paper will 

not engage with claims that:  a) DNNs cannot create new compositional representations on-the-fly, b) 

strategies learned by DNNs do not transfer well to radically different tasks or stimuli, and c) that DNNs 

cannot learn to distinguish causal relationships from mere correlations.  Whether current or future DNN 

architectures can achieve such compositionality, radical transfer, and causal inference remain open empirical 

questions (Battaglia et al. [Unpublished]; Russin et al. [Unpublished]; Lake [2014]), ones which will hopefully 

receive more attention in future research.  The ability to learn and reason about causal relationships in 

particular might be thought a distinguishing feature of human cognition and a key goal for more human-like 

AI (Penn and Povinelli [2007a]; Hespos and VanMarle [2012]; Pearl [2019]).  Granted, most neural networks 

are not trained to diagnose causal relationships, and many humans confuse correlation for causation (Lassiter 

et al. [2002]).  When neural networks are trained to diagnose causal relationships, they have shown some 

successes, especially generative architectures like variational autoencoders (Kusner et al. [Unpublished]; Zhang 

et al. [2019]) and models which use deep reinforcement learning (Zhu et al. [Unpublished]).  That said, 

comparative biases will surely affect these debates too, and we may hope that the four rebuttals canvassed 

here will suggest how to mitigate them when they do.   

Finally, in what follows, we will not here discuss linguistic behaviour or cognition.  The likeliest 

default position is that compositional recursive grammar is a uniquely human capacity amongst animals, and 

some classical criticisms of the neural network approach take this to be essential for intelligent behaviour 

(Fodor and Pylyshyn [1988]).  Furthermore, this capacity is engaged by many classic assessments of artificial 

intelligence like the Turing Test, and deep learning models—especially massive transformers like GPT-3—

have recently achieved impressive results on tasks like automated translation, question answering, and text 

production.  However, this capacity is closely-related to the other three that we have already set aside, and the 

way that the brain enables linguistic production remains contentious in developmental linguistics and 

cognitive neuroscience (Fitch [2014]; Scott-Phillips et al. [2015]; Berwick and Chomsky [2017]; Moore [2017]).  

Again, the goal of this paper is not to positively establish that DNNs are intelligent by rebutting all comers, so 

we leave the question of whether current or future DNN architectures can implement compositional 
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recursive grammar open (Russin et al. [Unpublished]; though see Lake [2019]).  The kinds of biases that will 

be described for perceptual decision-making and strategy game-play also appear in the linguistic domain 

(including the Turing test), so this may seem an odd omission given the paper’s aims.  The reason for it is 

simply that the evaluation of linguistic behaviour from deep learning systems (especially transformers like 

GPT-3) deserves its own specialized paper- (or book-)length treatment, whereas issues of comparative bias 

are already complex enough in the simpler systems and applications to occupy us here.   

 With these clarifications in place, we now proceed to review the four popular criticisms which will be 

considered here. 

 

2.1 Deep learning is too data-hungry 

One of the most common critical refrains is that DNNs require far more training data than humans to 

achieve equivalent performance.  The standard methods of training image-labelling DNNs, for example, 

involves supervised backpropagation learning on the ImageNet database, which contains 14 million images 

that are hand-annotated with labels from more than 20,000 object categories.  To consider another example, 

AlphaGo’s networks were trained on over 160,000 stored Go games recorded from human grandmaster play, 

and then further trained by playing millions of games against iteratively stronger versions of itself (over 100 

million matches in total); by contrast, AlphaGo’s human opponent Lee Sedol could not have played more 

than 50,000 matches in his entire life.  In the human case, critics emphasize the phenomena of ‘fast mapping’ 

and ‘one-shot learning’, which seem to allow humans and animals to learn from a single exemplar.  For 

example, Lake et al. ([2015b]) argue that humans can learn to recognize and draw the components of new 

handwritten characters, even from just a single example (Fig 1.).  Sceptics thus wonder whether DNNs will 

ever be able to learn comparatively rich category information from smaller, more human-like amounts of 

experience. 

 

Fig. 1 The decomposition of a novel handwritten figure into three individual pen strokes, which humans can 

purportedly learn from a single exemplar (reproduced from (Lake et al. [2015b])). 

2.2 Adversarial examples expose deep learning as a fraud 

‘Adversarial examples’ are unusual stimuli that are generated by one ‘adversarial’ DNN to fool another.  The 

original adversarial examples were ‘perturbed images’ that were created by a Generative Adversarial Network 
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(GAN) by slightly modifying an easily-classifiable exemplar in a way that was imperceptible to humans, but 

which could cause dramatic misclassification by DNNs targeted for attack (Goodfellow et al. [Unpublished] 

and see Fig. 2).  Perturbation methods most commonly modify many pixels across an entire image, but they 

can be as focused as a single-pixel attack (Su et al. [2019]).  The pixel vectors used to perturb images are 

usually discovered by training the adversarial DNN on a discriminative DNN’s response to specific images, 

but some methods can also create ‘universal perturbations’ that disrupt classifiers on any natural image 

(Moosavi-Dezfooli et al. [2017]).   

It was soon discovered that many perturbation attacks can be disrupted with simple pre-processing 

techniques, such as systematic geometric transformations of images like rotation, re-scaling, smoothing, 

and/or de-noising (a family of interventions called ‘feature squeezing’—Xu, Evans, and Qi 2017).  A 

reasonable interpretation of this phenomenon is that DNNs are vulnerable to image perturbations because 

their perceptual acuity is too keen; the attack exploits their sensitivity to precise pixel locations across an 

entire image, so it can be disrupted by slightly altering the pixel locations across the entire input image. 

 

        ‘panda’     ‘nematode’         ‘gibbon’ 

                         57.7% confidence             8.2% confidence                99.3% confidence 

 

Figure 2. An adversarial perturbed image, reproduced from (Goodfellow et al. [Unpublished]). After the 

‘panda’ image was modified slightly by the addition of a small noise vector (itself classified with low 

confidence as a nematode), it was classified as a gibbon with high confidence, despite the modification being 

imperceptible to humans. 

 

However, another family of adversarial example generation methods—involving the creation or discovery 

of ‘rubbish images’ that are supposed to be meaningless to humans but confidently classified by DNNs—

were found to be more resistant to such default countermeasures (Nguyen et al. [2015]).  Subsequent research 

has found that these (and other) adversarial examples exhibit many counterintuitive properties:  they can 

transfer with (incorrect) labels to other DNNs with different architectures and training sets, they are difficult 

to distinguish from real exemplars using pre-processing methods, and they can be created without ‘god’s-eye’ 

access to model parameters or training data.  Rather than being an easily overcome quirk of particular models 

or training sets, they appear to highlight a core characteristic of current DNN methods. 
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Much of the interest in adversarial examples derives from the assumption that humans do not see them 

as DNNs do.  For practical purposes, this would entail that hackers and other malicious agents could use 

adversarial examples to fool automated vision systems—for example, by placing a decal on a stop sign that 

caused an automated vehicle to classify it as a speed limit sign (Eykholt et al. [2018])—and human observers 

might not know that anything was awry until it was too late.  For modelling purposes, however, they might 

also show that despite categorizing naturally-occurring images as well or better than human adults, DNNs do 

not really acquire the same kind of category knowledge that humans do—perhaps instead building ‘a 

Potemkin village that works well on naturally occurring data, but is exposed as fake when one visits points in 

[data] space that do not have a high probability’ (Goodfellow et al. [Unpublished]). 

 

2.3 DNNs are not interpretable 

Another common lament holds that DNNs are ‘black boxes’ which are not ‘interpretable’ (Lipton 

[Unpublished]) or not ‘sufficiently transparent’ (Marcus [2018]).  State-of-the-art DNNs can contain hundreds 

of layers and billions of individual parameters, making it difficult to understand the significance of specific 

aspects of their internal processing.  However, key questions in this charge remain unanswered (Zednik 

[2019]), such as:  What kind of interpretability needs to be provided, to whom should the interpretation be 

provided, what is the purpose of interpretability, and how would we know whether we had succeeded in 

providing it?  At any rate, these concerns should only be counted against deep learning models if some 

obvious alternative systems perform better on them.  While DNNs are often compared to linear models 

(which are—probably incorrectly—thought to be more interpretable), usually the comparison class is adult 

humans.  Recent governmental initiatives such as DARPA’s eXplainable AI (XAI) challenge (Fig. 3) and the 

EU’s General Data Protection Regulation—which provides users with a ‘right to explanation’ for decisions 

made by algorithms which operate on their data—have quickened the challenge and provided it with some 

practical goals, if not always conceptual clarity (Turek [Unpublished]; Goodman and Flaxman [2017]). 

 

Figure 3.  The DARPA XAI concept; figure created by DARPA for public release (Turek [Unpublished]). 
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2.4 DNNs trained by reinforcement learn to ‘reward hack’ rather than solve problems 

Many of the most impressive achievements by DNNs highlighted above were produced by reinforcement 

learning (for an overview of this area, see Sutton and Barto [2018]).  This method trains networks using a 

general reward signal which is designed by the network’s programmers and tells the network whether it 

succeeded or failed on its last decision.  Many of the high-profile achievements of DNNs involved games like 

Go, chess, or Starcraft II because game score provides an easily-quantifiable reward signal.  In other areas of 

research such as artificial locomotion, creating an effective reward signal is more difficult.  Many reward an 

agent for simply moving forward in an artificial environment, perhaps with minimal energy expenditure by its 

digital avatar.  For example, one deep reinforcement model trained in the ‘Half-Cheetah’ testbed 

environment—in which models learn to move an idealized, two-dimensional cheetah avatar forward by 

manipulating several points of freedom in its two legs—learned that it could locomote the cheetah by falling 

forward and then flailing the legs in the air so as to flop the avatar forward on its back (Irpan [Unpublished]).  

In another widely-shared blog post written by the research group OpenAI, the researchers recount how their 

DNN learned to play the boat racing Atari game ‘Coast Runners’ by endlessly turn the boat in tight, off-

course circles without ever completing the race, because doing so allowed it to continually collect replenishing 

‘turbo’ bonus widgets which provided a rapid, never-ending boost to its game score (Amodei and Clark 

[Unpublished]).  Critics worry that these examples show that the models lack the ‘common sense’ that 

humans would bring to bear on these tasks, and that the solutions they learn are brittle ‘reward hacks’ that 

optimize the reinforcement signal without any real understanding of the problems they are trained to solve.   

 

3 Purposes, Interests, and Fair Comparisons 

There are many reasons why we might want to compare different kinds of agents in terms of their 

intelligence, rationality, or other mental abilities.  For one, such comparisons can serve metaphysical goals:  

we may want to learn about the different ways that intelligence can be realized in nature or artifacts—as has 

been traditionally explored in the literature on ‘multiple realizability’ (Polger and Shapiro [2016]).  Secondly, 

such investigations can serve semantic projects, by helping us clarify these concepts, which are often vaguely-

defined or equivocal (Akagi [2018]; Miracchi [2019]).  Thirdly, they can serve more practical goals:  we may be 

interested in the epistemic, ethical, or legal status of other kinds of agents, and the possession of specific 

mental abilities may be relevant to those statuses (Andrews et al. [Unpublished]; Allen [2006]).  Fourthly, they 

can be used for scientific modelling purposes in human cognitive psychology, to better understand and 

explain how intelligent behaviour is produced in our own case, by engineering systems based on different 

hypotheses and comparing their performance to human behaviour or their structure to that of the human 

brain (Stinson [2020]).  Fifthly, comparisons can serve a variety of engineering or medical projects:  we may 

want to establish the suitability of artificial models to predict the results of medical interventions on human 
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brains before conducting human trials, or as alternatives for human labour in a variety of different 

applications (Hassabis et al. [2017]).   

Though some of these purposes have been more frequently discussed in the context of animal 

psychology, they will become increasingly relevant to artificial intelligence as our computational models are 

able to successfully replicate more and more aspects of human and animal behaviour.  Though this list is not 

exhaustive, we can already see that there are many competing pressures underlying such comparisons, even 

and especially when the goals of the comparisons are not made explicit.  All of the aims, however, should 

focus on the degree of relevant underlying similarity that holds between the two systems to determine 

whether they succeed.  From a philosophy of science perspective, we should accept that these models often 

only need to reproduce parts or idealized aspects of these phenomena to serve their purpose; as Stinson puts 

it, quoting Winsberg, the right relationship is often something far more complicated and subtle than ‘mere 

mimicry’ (Winsberg [2010]; Stinson [2020]).   

So, how similar, or in what way, must a DNN’s processing be to a target system or mental ability to 

serve as an artificial implementation of it that is useful for these purposes?  Obviously, some aspects of a 

DNN’s implementation will be irrelevant to all of these goals; we should not fault artificial systems because 

they require external electricity sources to perform their processing any more than we should reward them for 

being able to function better than humans in low-oxygen environments.  One way to pose this question 

emphasizes the traditional distinction in cognitive science between competence and performance (Firestone, 

in press); artificial models should engage the same underlying competence that humans do when performing 

some task, but do not need to reproduce all the performance factors.  One concern about this strategy, 

however, is that competences can be construed in different ways, inviting evaluative differences to 

masquerade as empirical ones.  To review a topically-relevant example, one diagnosis of the famous 

disagreement between classicists Fodor and Pylyshyn ([1988]) and the connectionists (such as Smolensky 

[1988]) is that Fodor and Pylyshyn were only interested in a particular sort of explanation of compositionality 

and systematicity, whereas the connectionists were interested in many other phenomena which were better 

(or only) explained by connectionist representations (Matthews [1994]).  Differences of explanatory interest 

are common in debates in cognitive science, which perhaps explains why they are often difficult to resolve by 

empirical means (for another case study of such an impasse in comparative social psychology, see Penn and 

Povinelli [2007b]; Call and Tomasello [2008]; Buckner [2013]). 

One should be wary that one has been invited to such a masquerade whenever critics argue that only 

systems meeting certain restrictive criteria count as ‘genuine’, ‘real’, ‘strong’, or ‘bona fide’ examples of mental 

capacities like intelligence, learning, rationality, cognition, and so on.  Despite the formal ornament gilding 

these critiques, these adjectives are not natural kind terms with empirical content; they are rather baldly 

honorific, and their evaluative criteria can be stipulated arbitrarily from one moment to the next to suit the 

critics’ whims.  Indeed, such honorifics are beginning to show up in the appraisals of deep learning critics 
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such as (Bringsjord et al. [2018]), who allege that deep neural networks are not capable of ‘real’ learning—

which these authors hold is instantiated only in cases where agents can provide demonstrations for what they 

have learned adverting to formal definitions of key terms involved, as (to use an example suggested by an 

anonymous reviewer) a math student may produce in a proof of the fundamental theorem of algebra.  This 

benchmark produces the surprising verdict that children do not really learn how to walk, talk, or recognize 

objects, when it is sensible to suppose that artificial intelligence should aim to solve these basic competences 

on the road to more ambitious ones.  A diagnosis of this debate is that these critics are only interested in a 

special kind of learning which is paradigmatically instantiated in mathematical education, but which is hardly 

as central to other characteristically human cognitive competences as they suppose.   

While it is usually otiose to belabour such matters of taste or terminology, there are some practical 

disadvantages to indulging such restrictionism when it comes to such general terms as ‘intelligence’, ‘learning’, 

‘rationality’, or ‘cognition’ (Akagi [2018]).  First, there is worry that such critiques would confine AI to blind 

alleys that had already been explored in earlier stages of research.  Starting out by attempting to build systems 

that can solve pinnacle human achievements using declarative knowledge derived from human verbal 

justifications has repeatedly produced fragile systems that can mimic human behaviour only in limited 

applications involving pre-digested input for which they were explicitly programmed, but which can do little 

else, and whose behaviour fails to generalize to situations even slightly outside of their programming 

(Hofstadter [1985]; Brooks [1991]).  Though IBM’s DeepBlue defeated world champion Garry Kasparov in 

chess in 1997—perhaps the highest-profile achievement of this top-down approach to AI—it would have to 

be completely reprogrammed to play another game.  Reinforcement-learning-based DNNs, by contrast, have 

by now shown an impressive ability to learn their own solutions to dozens of different games without 

changing their algorithms (Mnih et al. [2015]; Silver et al. [2018]; Lyre [2020]).  

Secondly, such stipulations can close off questions which ought to be settled by empirical rather than 

terminological methods (Allen [2017]; Ramsey [2017]).  For example, even if mathematical cognition were our 

primary interest, empirical investigation of mathematical demonstration shows that low-level perceptual and 

pattern-matching abilities are more involved in the reliable manifestation of these competences in typical 

math students than we would have presumed from the armchair (Landy et al. [2014]).  And finally, reliance on 

such honorifics has a way of leading to constantly shifting goalposts; every time an animal or artificial system 

satisfies a previously specified benchmark, the critic can simply endorse a yet more restrictive interpretation 

of ‘real’ or ‘genuine’ and push the borderline ever-closer to the uppermost limits of human performance—

and possibly even beyond.  For example, these interests led the same critics to conclude controversially that 

human cognition is hypercomputational, without providing any empirical evidence that humans reliably 

hypercompute or ethological investigation into the conditions in which they do so that would be required to 

conduct fair comparisons (Chalmers [1995]; Bringsjord and Arkoudas [2004]; Davis [2004]; Govindarajulu 

and Bringsjord [2012]).     
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4 A Crash Course on Comparative Bias 

In this section, we extract a general lesson that can help us avoid these pitfalls by looking to other 

sciences that have faced similar pressures.  Comparative psychology and cognitive ethology have struggled to 

fairly align different kinds of intelligences for more than a century, and have by now come to appreciate that 

human researchers are vulnerable to systematic biases that can distort such comparisons by causing us to rush 

to judgment without properly evaluating the relevant underlying similarities.  To counter these biases, the 

study of machine behaviour should adopt similar methodological correctives, such as Morgan’s Canon and 

Hume’s Dictum (Buckner [2013]; Rahwan et al. [2019]).  One bias which has already been well-studied by 

philosophy of comparative psychology and artificial intelligence is anthropomorphism (de Waal [2000]; 

Wynne [2004]; Proudfoot [2011]). A sizeable literature in comparative psychology explores correctives for 

anthropomorphism and their proper application (Sober [1998]; Karin-D’Arcy [2005]; Buckner [2017]).  On 

the other hand, there are also a variety of anthropocentric biases which can thumb down the scales against 

nonhumans.  Anthropocentrism can cause us to assume that only behaviours with the superficial trappings of 

human performance are valuable or intelligent—such as supposing that only animals that navigate by sight 

could possess cognitive mapping, when bats or dolphins might create maps of their environment using 

echolocation.  Semantic anthropocentrism is usually a mistake, but not always; in cases where traits really are 

uniquely human—as again is probably the case with semantically compositional language with recursive 

grammar (Fitch [2010]; Berwick and Chomsky [2017])—semantic anthropocentrism may be unavoidable.   

One form of anthropocentrism is guaranteed to be a mistake, however:  the bias of 

‘anthropofabulation’ (Buckner 2013).  Anthropofabulation combines semantic anthropocentrism with an 

exaggerated view of human cognitive performance. Anthropofabulation results from an empirically-

uninformed picture of human cognitive processing derived from introspection or cultural traditions.  

Common sense in some cultures tells us that our thought processes are rational—derived from a 

dispassionate processing of the situation, a direct introspective access to our actual beliefs and motivations, 

and independence from subtle environmental scaffolding, historical associations, or emotional reactions.  A 

great deal of human social psychology and philosophy of psychology, however, has cast this picture of human 

cognition into doubt (Nisbett and Ross [1980]; Kahneman and Frederick [2002]; Samuels et al. [2002]; 

Carruthers [2011]).   

In practice, anthropofabulation has caused sceptics to compare human and animal performance in 

situations which are crucially disanalogous, such as when humans are tested with conspecifics but 

chimpanzees with heterospecifics, humans tested in a known caregiver’s lap while chimpanzees are tested 

with strangers behind Plexiglas, or humans are tested on culturally-familiar stimuli while chimpanzees are 

tested on unfamiliar artificial stimuli (Boesch [2007]).  Anthropofabulation’s rosy vision of human cognition 

causes us to implicitly assume that human performance could not possibly depend upon such environmental 

scaffolding, leading us to overlook or downplay these disanalogies.  While these disanalogies are generally 
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now seen as mistakes in comparative psychology, we are only beginning to appreciate their analogues in 

artificial intelligence (Canaan et al. [Unpublished]; Firestone [in press]; Zerilli et al. [2019]).  The remainder of 

the paper argues that critics of DNNs are similarly evaluated in unfairly disanalogous situations or by 

assessing penalties to DNNs for factors that apply equally well to adult human cognition.  Once the 

anthropofabulation in these critiques is exposed, they no longer clearly support the conclusion that deep 

learning systems and human brains are performing fundamentally different kinds of processing—and indeed, 

might teach us hard lessons about our own cognition as well.  

 

5 Four Rebuttals 

This final section illustrates and rebuts anthropofabulation in the four criticisms of deep learning on which 

we focused above.  This story is as much or more about humans than about machines; indeed, the story’s 

moral is that artificial intelligence researchers need to draw less upon introspection and more on an unbiased, 

empirically-grounded appraisals of human intelligence—warts and all—to fairly evaluate machine behaviour. 

In many cases, when we do this systematically, we will find that the machines have not been given the same 

kinds of tasks or provided with the same kind of training as the humans, even when it is possible to do so 

(Firestone [in press]).    

 

5.1 Human learning involves more trainable exemplars than common sense supposes 

One way that anthropofabulation might bias us against DNNs is by causing us to undercount the number of 

trainable instances that should be scored to adult human performance.  Two factors are often neglected in 

counting the number of exemplars that humans should be scored as having been exposed to in learning:  1) 

that many different vantages of the same object can provide distinct training exemplars for cortical learning, 

and 2) that offline memory consolidation during sleep and daydreaming can replay the same exemplars—and 

even simulated novel exemplars generated from those same experiences—many thousands of times in offline 

repetitions.  Ignoring these factors, common sense might score an infant’s ten-minute interaction with a new 

toy as a single exemplar.     

It is difficult to decide exactly which features of human perceptual learning are relevant to the 

comparison in order to devise a proper accounting system for humans, but we can review some results in the 

neighbourhood.  Studies of motion-picture perception have suggested that human vision has a frame rate of 

about ten to twelve images per second (below this rate, we cannot perceive motion as continuous).  We can 

also consider how long it takes us to become consciously aware of or be affected by a stimulus; while it takes 

200-400 ms for us to become consciously aware of a perceptual stimulus, attentional shifting to a new 

stimulus begins in as little as twenty milliseconds, and category structure can be implicitly influenced by 

nonconscious exposures to stimuli as brief as one millisecond (Kunst-Wilson and Zajonc [1980]; Schacter 

[1987]; Murphy and Zajonc [1993]). Moreover, perceptual memories may be repeatedly reconsolidated by 
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theta rhythm in the medial temporal lobes during sleep and daydreaming many times over a period of months 

and years (Stickgold [2005]; Walker and Stickgold [2010]).  We also know that in mammals, these 

consolidation exposures can train the cortex on novel experiences synthesized from combinations or 

transformations of previous training information—as revealed by cell recordings that show rats mentally 

exploring novel maze routes during sleep that they never actually traversed when awake (Gupta et al. [2010]).  

Taking all these factors into account, an infant’s ten-minute interaction with a new toy might be fairly scored 

as providing tens of thousands of trainable exemplars, rather than a single one, as common sense might 

suppose.  In this sense, Herbert Simon’s classic quip that ‘everything of interest in cognition happens above 

the 100-millisecond level’ is classic anthropofabulation, focusing attention on only the introspectively-

available surface features of human categorization while ignoring a vast iceberg below (Hofstadter [1985]).1  

Neither is this merely idle nit-picking; neural network models that attempt to replicate these 

nonconscious aspects of human learning can make more efficient use of smaller, more human-like training 

sets.  For example, when deep learning models are trained on successive frames of video rather than static 

exemplars, many different vantage points on the same object can be treated as independent training instances 

that improve model performance (Lotter et al. [Unpublished]; Orhan et al. [Unpublished]; Luc et al. [2017]).  

When DNNs are supplemented with ‘episodic replay’ buffers that are inspired by declarative memory 

faculties in mammals, a network’s performance can continue to benefit from repeatedly replaying exposure to 

the same training instances numerous times (Mnih et al. [2015]; Blundell et al. [2016]; Vinyals et al. [2016]). 

Predictive, ‘self-supervised’ networks—which attempt to learn by predicting the future from the past, the past 

from the present, occluded aspects of objects from the seen aspects, and so on—are championed as the 

future of the field by DNN pioneers like LeCun ([2018]). There is little evidence that the efficiency gains that 

can be obtained from such biologically-inspired innovations have already plateaued.    

 Still, critics hold that this all falls short of the kind of one-shot learning of novel digits and their 

construction emphasized by some critics, which has purportedly been modelled in some Bayesian systems 

(see Section 2.1 above).  While numerous DNN systems produce one-shot or even zero-shot learning on 

related tasks, (Brown et al. [Unpublished]; Socher et al. [2013]; Rezende et al. [2016]), critics note that they do 

so only with extensive pre-training.  Nevertheless, there remain significant questions about the fairness of this 

response.  Humans are capable of such one-shot learning only after extensive practice in recognizing and 

generating a variety of different handwritten figures, experience which has occurred outside the purview of 

any laboratory experiment.  The Bayesian programs which are purported to model this one-shot learning 

must incorporate significant amounts of high-level knowledge and representational structures that are 

manually-encoded by their programmers (Botvinick et al. [2017]).  These Bayesian modellers on some 

                                                           
1 Granted, useful information can be obtained from the first-person perspective; Ericsson and Simon ([1984]) 
emphasized speak-aloud protocols, which can provide useful information about the information attended to by a 
subject, but which are quite different than the kind of rationalization considered in Section 5.3. 
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occasions profess agnosticism as to the origins of this knowledge, and on others wave their hands at 

genetically-programmed innate mechanisms (Lake et al. [2017b], p. 53).  Such specific forms of knowledge are 

not plausibly encoded directly in the genome, however, which likely only contains enough storage space to 

specify very general wiring principles of the sort that already make DNNs especially good at things like 

translation invariance and which were inspired by neuroanatomical observations (Zador [2019]).  In short, 

until the cognitive provenance of this knowledge is accounted for in humans —specifically, until we know the 

nature and number of training exposures adult humans require to scaffold such one-shot learning, and how 

their genetic scaffolding expresses itself in the human brain—these concerns cannot fairly be scored against 

DNNs in this debate.   

 

5.2  DNN’s verdicts on adversarial examples may be correct 

Recent investigations have challenged the assumption that a DNN’s take on adversarial examples is really so 

alien to human perception.  One still-controversial way to challenge this assumption is by using perturbation 

methods to produce artificial stimuli that can fool humans (Elsayed et al. [2018]). Even more interestingly, 

however, Zhou and Firestone ([2019]) showed that humans can easily ‘adopt the machine perspective’ and, 

when forced to choose between a predetermined list of candidate labels, predict a DNN’s labels for rubbish 

images with high accuracy (Fig 5).  These authors suggest that the behaviour of DNNs in these cases which 

initially appeared to be an error might have been due to the fact that during training and testing, the DNNs 

were always forced to choose amongst a list of candidate labels, even when images were very different from 

previously-classified exemplars.  Humans, by contrast, can typically reject stimuli as unusual or ambiguous.   

 

Fig 4.  A perturbed image that can purportedly fool human subjects, with the original image of a cat on the 

left, and the perturbed image (often classified as a dog) on the right.  Image reproduced from (Elsayed et al. 

[2018]). 
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Figure 5.  Examples of two different types of rubbish images tested by Zhou and Firestone [2019] with 

preferred DNN labels.  In a forced-choice task, humans were able to guess a DNN’s preferred labels for 

these images with high accuracy. (Image reproduced from Zhou and Firestone [2019]). 

 

This difference marks a crucial disanalogy in many comparisons between natural and artificial 

judgments on adversarial examples, a difference which may be obscured by anthropofabulation.  Specifically, 

Zhou and Firestone’s results suggest that DNNs do appear to capture some aspects of lower-level perceptual 

categorization in humans; many rubbish images do look like members of the purportedly incorrect label class, 

even if humans do not ultimately think that they look like they are members of that class (the way an 

intrinsically meaningless inkblot in a Rorschach test may look like a duck without looking like it is a duck).  

DNNs may thus be correctly delivering human perceptual similarity judgments, but not yet have the 

resources to draw a distinction between an exemplar superficially resembling something and actually looking 

like a member of the class.2  This kind of distinction is difficult for even human children and adult 

chimpanzees to master (Flavell et al. [1983]; Krachun et al. [2016]), and the DNN modellers did not even 

attempt to train their networks to perform this kind of discrimination.  Perhaps it remains an open question 

how to model the latter kind of judgment in DNNs (Smith [2019]), but currently-available comparisons do 

not yet demonstrate that a DNN’s processing is hopelessly alien to human perception.   

Even more recently, commentators have begun explicitly calling out the foundational 

anthropocentrism of the debate over adversarial examples, by questioning whether the verdicts DNNs issue 

on these unusual stimuli should be considered mistaken or unintelligent in the first place.  A ground-breaking 

series of empirical studies by Ilyas et al. ([2019]) recently suggested that vulnerability to adversarial examples 

                                                           
2 One residual concern here, pointed out by an anonymous reviewer, is that the kinds of errors made by these networks 
may evince what Watson ([2019]) calls ‘myopia’, or a tendency to ignore structural relationships that seem obvious to 
humans.   
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may be a feature and not a bug of DNNs.  These authors discovered two surprising things:  first, that when 

DNNs were trained exclusively on a diet of adversarial examples, their classification behaviour transferred 

well to novel natural images, and second, that when their training sets were altered to remove the features 

which caused them to be susceptible to adversarial examples, their discrimination performance on natural 

stimuli was also significantly diminished.  Combined, these two findings suggest that the features to which 

DNNs respond in adversarial examples are well-generalizing aspects of naturally-occurring data:  they are 

predictively-valid in naturally-distributed data, and humans may only fail to deploy them in their own 

categorizations due to comparatively inferior perceptual or cognitive acuity.  While this does not diminish the 

practical significance of the phenomenon as a security threat, it raises philosophical questions as to which 

features ought to be relevant to assessing intelligence in categorization tasks.   

These questions may soon become especially pressing, for the detection of such features may have 

enabled some DNNs to make dramatic leaps beyond the limits of human intuition on problems characterized 

by high complexity and holistic nonlinear interactions—such as the prediction of stable end states for folding 

proteins, a problem on which the DNN-based AlphaFold system recently outperformed human modellers 

who had devoted their professional lives to solving this kind of task (AlQuraishi [2019]).  Perhaps the DNNs 

can discover intricate, high-frequency ‘interaction fingerprints’—similar in form to the features which cause 

them to be vulnerable to adversarial perturbations—that point the way to new discoveries in disease diagnosis 

and drug development, but which are beyond human ken (Gainza et al. [2019]).  It is difficult to justify the 

conclusion that science should eschew such features without simply relying on a flat-footed form of 

anthropocentrism; and pragmatic philosophers of science would have little grounds for turning down this 

more fecund future science, even if its course is driven by inscrutable DNNs.   If these categorizations are 

not necessarily blunders, then the ability of deep nets to detect the features on which they are based should 

no more be counted against their candidacy for intelligence than the ability of Einstein to see things others 

did not in the equations describing gravity and black holes.  Though we have here raised more questions than 

we have answered, we can already reject the common, anthropofabulous conclusion that the DNNs’ verdicts 

on adversarial examples expose them as exhibiting merely ersatz intelligence; from there, we must leave the 

full investigation of adversarial examples and their implications to other work (Buckner [Unpublished]). 

 

5.3 Human decision-making is also opaque 

As noted above and in several critical analyses, the interpretability challenge conflates several different 

concerns which are probably best separated.  To make a start at disentangling them, the distinction between 

explanatory rationality and justificatory rationality may be useful here (Buckner [2019b]).  Questions of 

explanatory rationality concern the causal history of agent’s decision-making in terms of its internal reasons 

for acting—that is, the evidence or grounds that it acted upon when producing the output that it did in that 

situation.  In the XAI challenge, for example, the questions ‘Why did the model do that?’, ‘Why not 
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something else?’, and ‘How do I correct an error?’ concern dimensions of explanatory rationality.  

Justificatory rationality, on the other hand, involves the correctness or trustworthiness of the model’s 

decisions, which may or may not cite causally-determinative factors.  In the XAI challenge, this covers the 

questions, ‘When do you succeed or fail?’, ‘When can I trust you?’, and especially ‘Why was that the correct 

thing to do?’  A key concern here is that we should not expect a single approach to the interpretability 

challenge to simultaneously address both dimensions of rationality; it is possible that causal explanations of 

the nets’ behaviours may not cite factors that provide intelligible justifications to humans, and justifications 

may not cite causally-determinative factors.  Anthropofabulation causes us to conflate these two kinds of 

concern, however, because common sense supposes that the justifications humans produce through 

introspection have direct, non-inferential access to the causal antecedents of the behaviours so justified.  

However, a significant amount of cognitive science suggests that this picture of human introspection is 

mistaken.   

 To provide some examples, one of the reasons that people have supposed the internal processing of 

DNNs to be opaque is that popular visualization methods which have been developed to determine the 

representational functions of their hidden nodes have produced strange, chimerical images.  Activity 

maximization is perhaps the most popular method; it tweaks input images using further machine learning 

until they maximally activate some particular node in a DNN’s internal layers.  This is supposed to show us 

the feature that node detects in input images when it activates.  A widely-circulated paper from Google’s AI 

research group noted that their popular Inception network seemed to detect a variety of chimerical features in 

images, such as ‘pig-snails’, ‘admiral-dogs’, and ‘camel-birds’ which resemble no intuitively-available features 

in conscious human perception (Mordvintsev et al. [Unpublished], and see Fig 6).   

However, activity maximization is a new visualization technique that is poorly understood and very 

unlike introspection in humans; directly comparing introspectible features to its results is like comparing 

apples to resequenced orange DNA.  There is little reason to suppose that we have the ability to 

introspectively generate images that maximally activate particular neurons somewhere in our visual cortex.  It 

is also likely that representation in visual cortex is highly-distributed across many neurons, so individual 

neurons in primate brains probably lack intelligible representational functions to begin with (Plaut and 

McClelland [2010]).  In fact, when activity maximization is applied to neurons in a live monkey’s brain, the 

synthesized images are similarly chimerical (Ponce et al. [2019] and see Fig 7).  In short, these methods may 

have some useful role in addressing explanatory questions—telling us why, causally, the DNN (or monkey) 

reacted in that way to that exemplar; but we should not expect the images produced by these methods—

either in DNNs or biological brains—to provide intuitively-interpretable justifications.  



19 

 

 

Figure 6.  Results of running an activity maximization algorithm on a picture of clouds in a trained-up version 

of Google’s Inception image-classifying DNN.  Reproduced from Mordvintsev et al. [2015]. 

 

 

Figure 7.  Results of running an activity maximization algorithm on an electrode implanted to detect the firing 

rate of a live monkey neuron, reproduced from Ponce et al. [2019]. 

 

 On the side of justificatory rationality, methods have been designed to generate justifications for 

DNN behaviour that humans find intuitively satisfying, but they have been criticized for failing to highlight 

causally-determinative factors.  Many of these methods rely on producing verbal justifications for a network’s 

decisions which are the result of further machine learning.  For example, the ‘AI Rationalization’ system 

collects a series of verbal justifications from humans while playing the Atari game ‘Frogger’, and then uses 

further machine learning to correlate those verbal justifications with cases where a DNN made similar 

decisions in similar circumstances (Ehsan et al. [2018] and see Fig 8).  The system can then deliver those 

justifications to human observers to support its decisions after they have been made.  The researchers who 

developed this system obtained user-satisfaction ratings from three different justification policies.  Human 

subjects reported finding the human-derived rationalizations more satisfying than more causally-accurate 

alternatives (in fact, the more causally-accurate a justification was, the less subjects liked it—Fig 9).  The 

authors conceded that there is no direct causal link in this case between the features which actually caused the 

system to make the decision and the features cited in the verbal justification.   
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Figure 8.  The ‘Rationalizing Robot’ from Ehsan et al. [2018] providing an example rationalization of its 

decisions. 

 

 

Figure 9.  Favourability rank-orderings from human subjects who were asked to rank their preferences for 

three different policies, as reported by Ehsan et al. [2018].  The ‘Rationalizing robot’ provided the human-

correlated justifications for its actions; the ‘Action-declaring robot’ simply stated the action it was going to 

perform as it did it; and the numerical robot provided its calculated confidence values for the actions it had 

just performed (which is perhaps the most causally-accurate explanation for the robot’s decision-making).  

  

However, these authors note that social psychology similarly finds a disconnect between human 

rationalizations and the factors which actually caused the actions so rationalized.  In fact, the best empirical 

theories of these systems in humans construe them as interpretive and inferential, generated post-hoc to 

promote social acceptance, coherent self-identity, positive self-esteem, and future-oriented control rather than 

out of a concern for backward-looking causal accuracy.  This conclusion derives from many different lines of 

evidence (for reviews see [Carruthers 2011]; [Cushman 2018]).   
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For one, there is research from split-brain patients, who have had the connections between their 

brain hemispheres severed (often to mitigate seizures—and similar symptoms can be caused by stroke, 

tumours, or arterial ruptures).  Such patients cannot integrate visual information obtained only by one 

hemisphere of the brain with verbal justifications generated by the other; as a result, an instruction (such as 

‘get up and walk’) can be visually presented to the right hemisphere (via the left eye), causing the patients to 

initiate an appropriate behaviour (Gazzaniga [2000]).  The patients can then be asked to explain their 

behaviour, and their left hemispheres (which are responsible for most of the linguistic processing) can use 

contextual information to produce justifications which are plausible but completely confabulated (such as ‘I 

wanted to go into the kitchen to get a Coke’).  For another, the phenomena of choice blindness further 

demonstrates that even neurotypical individuals can readily confabulate plausible justifications for choices 

they did not actually make, justifications which could not possibly be causally accurate but are 

indistinguishable from normal cases of introspection (Johansson et al. [2006]).  In a choice blindness 

experimental design, subjects are asked to make a choice, then distracted, and finally given an option other 

than the one they actually selected.  When they are then asked to justify having selected this option, most 

subjects readily do so, often without any awareness that the item they were provided is different from the one 

they actually chose.   

There are many other sources of evidence impugning the causal accuracy of human introspective 

justifications, and illustrating the readiness with which we confabulate when we lack causally-accurate 

information.  While there may be good reasons to demand more from deep learning systems than we could 

expect from humans, at present we are merely considering fair comparisons.  In that respect, so long as we do 

not conflate explanatory and justificatory rationality, it does not seem that DNNs have a fundamental 

problem with interpretability that is not also exhibited by human minds. 

 

5.4 Humans are also notorious reward-hackers 

The final criticism to rebut is the concern that DNNs trained by reinforcement signals merely learn to ‘reward 

hack’ rather than learn real solutions to the problems on which they are trained.  The response here is to note 

that humans are also notorious reward-hackers when placed in badly-designed environments.  One of the 

most obvious and directly comparable situations involves humans playing video games which are 

‘imbalanced’ in their reward structure.  This is a very common concern in online roleplaying games which 

offer many different routes to advance one’s character.  In these games, experience points and in-game 

currency are typically obtained by defeating foes or completing skilful actions.  Game designers work 

exhaustively to create a homeostatic economy of experience and currency within the game; different methods 

to obtain these resources should all be perceived as roughly as difficult, time-consuming, and enjoyable as one 

another to support diverse routes to advance within the game.  Proper balancing enhances playability and 

perceived fairness, in order to keep players coming back for further character enhancement.   
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Humans, however, are highly-adept at discovering the most efficient ways to obtain resources within 

a competitive game, and even slight imbalances will be found if present.  These opportunities are often called 

‘exploits’.  Game exploits are discussed and shared in online message boards, and tens of thousands of game 

players can quickly flock to repeating an exploit for days on end.  Viewed with the same kind of detachment 

as the OpenAI’s endlessly spinning boat, these human behaviours look just as pathological.  One exploit in 

the game Fallout 4, for example, involves repeatedly building and disassembling tens of thousands of copper 

statues of a baseball player (which provides a small boost to experience) for twelve hours straight until they 

fill an entire abandoned town.  For present purposes, the important point is that we do not conclude that 

these players have fundamentally misunderstood the point of their activities.  Instead, we conclude that the 

game environment is badly-designed, and the human players are ingenious at seeking out and taking 

advantage of these imbalances.  The solution to an exploit is not to lecture players about lacking ‘genuine’ 

rationality or ‘real’ learning; it is to patch the game to change its reward structure, to restore balance to its 

reinforcement ecosystem—which can sometimes take teams of experienced programmers dozens of patches 

to achieve through trial-and-error. 

Indeed, the difficulty of engineering artificial environments in which humans do not reward hack can 

make us wonder how the problem was ever solved in natural environments.  The glib answer is that we did 

not solve it; natural selection solved it, by applying a trial-and-error approach to millions upon millions of our 

striving and starving ancestors.  There is little reason to suppose that the product of this tinkering is a simple, 

transparent set of learning principles which could be captured in symbolic, rule-based form.  It is, instead, a 

highly-complex physical body whose kinematics makes some motions more natural than others, a nervous 

system which reads its status in real time via a set of rich, multi-modal sensory inputs, a set of specialized 

sensory input organs that are more receptive to certain stimuli than others, and a highly-constrained brain 

whose operation can be subtly modified by a symphony of hormones, neurotransmitters, and 

neuromodulators whose levels are dynamically controlled by these bodily inputs.  Thus, rather than seeking 

out the optimal, intuitively-satisfying Bayesian meta-learning rule, biologically-inspired progress in 

reinforcement learning is more likely to be achieved by evolutionary search algorithms exploring 

combinations of bodily parameters for richer, more multi-dimensional reinforcement learning.  DNN 

researchers should be trying to supplement models with additional and more multi-dimensional reward 

signals like fatigue, digestion, anxiety, surprise, tissue damage, emotional reactions, and social cues like 

accolade or embarrassment, rather than monolithic new learning rules or innate domain-specific knowledge.   

 Even worse, there is little reason to think that reinforcement learning in humans is as successful as 

anthropofabulation might have us believe.  In sociology and psychology, there is an entire research area 

investigating the ways that simple, quantified evaluation systems distort human decision-making (Merry 

[2016]; Nguyen [2020]).  Obvious examples occur when more natural reward systems—like food or social 

cues—become co-opted by new, more readily-available stimuli.  Simple examples of this phenomenon 
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involve normally self-limiting reinforcers like sugar or alcohol suddenly becoming available in purer forms 

and unlimited amounts, leading to pathologically unhealthy behaviour.  More subtle are the cases where 

reward policies are co-opted by entirely new kinds of stimuli that decouple the reward signal from the goals 

that evolution tweaked them to indicate.  These hijackings can be good or bad; whether the ability of artificial 

sweeteners to decouple sweetness from caloric content is a good thing depends upon the balance of relevant 

dietary science.  Those working in this area, however, worry especially about cases where symbolic or 

numerical stimuli are used as proxies for more difficult-to-assess rewards.  Examples of such proxies are 

endemic in modern life:  credit scores, Fitbit counts, social media likes, Grade Point Averages, h-index, 

university rankings, and so on.  One does not need to look hard to find many examples where whole 

organizations or societies pathologically chase the maximization of reward proxies, often to the detriment of 

the more basic goals that they were initially designed to track.   

 In short, reward-hacking is not just some curious problem which confronts badly-designed DNNs 

and their ‘alien’ ability to game a reward signal; it is a characteristically human pathology which plagues our 

own ability to play video games, succeed in business or academia, and generally not render the world 

unliveable.  Anthropofabulation suggests that humans have some uncanny innate ability to flexibly pursue 

intrinsically-valuable goals in highly-diverse environments; but a fair appraisal of modern life would suggest 

that humanity is not currently doing so well at this particular balancing act.  Perhaps for both humans and 

DNNs, the needed solution is to improve the structure of the environments in which we learn, rather than to 

fault the learning agents which seek solutions within them.    

 

6 General Lessons 

The goal of this paper has been to advocate for fairer comparisons between DNN and human behaviour 

along four of the most popular criteria deployed by sceptics to argue that the kind of processing that occurs 

in DNNs is fundamentally different from human cognition, and explore general morals which can be applied 

to more productive future debates.  Section 5 argued that unbiased assessments would score humans similarly 

to DNNs along all four criteria.  The assumption that humans are not vulnerable to these criticisms is not 

supported by empirical data, perhaps instead propped up by the bias of anthropofabulation.  Where 

modelling human cognition is our goal, we should not aim to create DNNs that learn only from very few 

training examples without significant scaffolding, are immune to adversarial examples, use decision-making 

mechanisms which are completely transparent, or fail to exploit reward imbalances when placed in poorly-

designed environments.   

 Some unifying threads of the preceding discussion can now be drawn out as promising topics for 

future research.  Critical discussions about artificial intelligence should feature more explicit reflection on how 

to properly align human and machine performance when conducting comparisons, especially by bringing in 

empirical research from human psychology, neuroscience, and biology.  In particular, we need to be sure that 
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our evaluation of human behaviour comes from a sceptical appraisal of empirical data, undistorted by the 

rose-tinted hue of anthropofabulation.  In some cases, the relevant empirical work on humans remains 

inchoate; in particular, we need more research on the provenance of scaffolded learning in humans and on 

the implications of adversarial examples in perceptual psychology.  And finally, we need more research on 

how to properly structure bodies and environments so as to obviate pathological reward-hacking behaviour in 

both humans and artificial agents.  Regarding DNNs not as black boxes but rather as unflattering mirrors 

might help us accept hard lessons about ourselves, and in so doing take steps toward addressing some of the 

most pressing problems of our day. 
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