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Introduction

• Presentation of results from the Sifter Organizer project

• Collaboration with Mosaic Technologies, Inc.

• Selection of learning objects based on their metadata

• Filtering and sorting them according to their rated quality
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Mosaic Technologies

• Created custom e-learning for corporate clients

• Employed instructional designers in production

• Required streamlined LO search and retrieval 

• Ultimate objective: zero time of development
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Our Proposal

• Describe learning resources using metadata

• Harvest metadata from various repositories

• Develop LO evaluation metadata format

• Employ evaluation results in search process
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Previous Work

• Multimedia Educational Resource for Learning and 
Online Teaching (MERLOT) http://www.merlot.org

• Learning Object Review Instrument (LORI) 
http://www.elera.net/eLera/Home/About%20%20LORI/

• Various definitions of evaluation criteria

•eg. DESIRE http://www.desire.org/handbook/2-1.html

•Nesbit, et.al. http://www.cjlt.ca/content/vol28.3/nesbit_etal.html

http://www.merlot.org/
http://www.elera.net/eLera/Home/About%20%20LORI/
http://www.desire.org/handbook/2-1.html
http://www.cjlt.ca/content/vol28.3/nesbit_etal.html
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MERLOT

• Peer review process

• Materials ‘triaged’ to presort for quality

• 14 editorial boards post reviews publicly

• Criteria (five star system):
• Quality of Content

• Potential Effectiveness as a Teaching-Learning Tool

• Ease of Use
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LORI

• Members browse collection of learning objects

• Review form presented, five star system, 9 criteria

• Object review is an aggregate of member reviews
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Issues (1)

• The peer review process in MERLOT is too slow, 
creating a bottleneck

• Both MERLOT and LORI are centralized, so 
review information is not widely available

• Both MERLOT and LORI employ a single set of 
criteria – but different media require different 
criteria
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Issues (2)

• Results are a single aggregation, but different 
types of user have different criteria

• In order to use the system for content retrieval, the 
object must be evaluated
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What we wanted…

• a method for determining how a learning resource 
will be appropriate for a certain use when it has never 
been seen or reviewed

• a system that collects and distributes learning 
resource evaluation metadata that associates quality 
with known properties of the resource (e.g., author, 
publisher, format, educational level)
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Recommender Systems

• “Collaborative filtering or recommender systems use a 
database about user preferences to predict additional 
topics or products a new user might like.” (Breese, et.al., 
http://www.research.microsoft.com/users/breese/cfalgs.html)

• The idea is that associations are mapped between:
• User profile – properties of given users

• Resource profile – properties of the resource

• Previous evaluations of other resources
(See also http://www.cs.umbc.edu/~ian/sigir99-rec/ and 

http://www.iota.org/Winter99/recommend.html )

http://www.research.microsoft.com/users/breese/cfalgs.html
http://www.cs.umbc.edu/%7Eian/sigir99-rec/
http://www.iota.org/Winter99/recommend.html
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Firefly

• One of the earliest recommender systems on the web

• Allowed users to create a personal profile

• In addition to community features (discuss, chat) it 
allowed users to evaluate music

• User profile was stored in a ‘Passport’

• Bought by Microsoft, which kept ‘Passport’ and shut 
down Firefly (see http://www.nytimes.com/library/cyber/week/062997firefly-side.html and 
http://www.nytimes.com/library/cyber/week/062997firefly.html )

http://www.nytimes.com/library/cyber/week/062997firefly-side.html
http://www.nytimes.com/library/cyber/week/062997firefly.html
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Launch.Com

• Launched by Yahoo!, allows users to listen to 
music and then rate selections

• Detailed personal profiling available

• Commercials make service unusable, significant 
product placement taints selections http://www.launch.com

http://www.launch.com/
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Match.com

• Dating site

• User creates personal profile, selection criteria

• Adds ‘personality tests’ to profile
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Our Methodology

• Perform a multidimensional quality evaluation of LOs 
(multi criteria rating)

• Build a quality evaluation model for LOs based on their 
metadata or ratings

• Use model to assign a quality value to unrated LOs 

• Update object’s profile according to its history of use 

• Identify most salient user profile parameters
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Rethinking Learning Object Metadata

• Existing conceptions of metadata inadequate for our 
needs

• Getting the description right

• The problem of trust

• Multiple descriptions

• New types of metadata

• The concept of resource profiles developed to allow the 
use of evaluation metadata
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Resource Profiles

• Multiple vocabularies (eg., for different types of object)

• Multiple authors (eg., content author, publisher, clissifier, 
evaluator)

• Distributed metadata (i.e., files describing the same 
resource may be located in numerous repositories)

• Metadata models

• Analogy: personal profile
See http://www.downes.ca/files/resource_profiles.htm

http://www.downes.ca/files/resource_profiles.htm
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Types of Metadata
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Evaluation Approach…

• Development and definition of evaluative 
metadata

• Expanding evaluation schema to include user 
types with a set of relevant ratings at different 
levels of detail

• Quality evaluator for the assessment of 
perceived subjective quality of a learning object 
based on criteria specific to each type of object
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Our Approach

• Quality evaluator using LO type-specific evaluation 
criteria with rating summary or ‘report card’

• information according to eight groups of LO users

• weighted global rating

• user-tailored weighting; user preferences of the evaluation quality 
criteria

• Combination of subjective quality values that are 
purposefully fuzzy
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Sample Schema
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Sample Schema (2)
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Representing Evaluation Data

• Using the schemas defined, evaluation data is 
stored as XML files

• These XML files are aggregated alongside learning 
object metadata

• Evaluation data may then be aggregated or 
interpreted
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The Sifter Harvester

http://sifter.elg.ca stephen  monctonz

http://sifter.elg.ca/
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The Sifter Tagger
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Sifter Tagger with Rater
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- Content only

Part I: Data

4 LO scenarios

- Content +

- Metadata

- Content +

- Evaluations

- Content +

- Metadata  +

- Evaluations

Learning
Object

MetaData

Instructiona
l

IP

General

Technical

LO Meta
MetaData

Learning
Object

MetaData

Instructiona
l

IP

General

Technical

LO Meta
MetaData
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The User Profile

• user description data: required or available for the user 
to enter via sign-in forms for example:

• user information: age, gender, occupation, education level…

• user preferences: language, topics of interest, choice of 
media… 

• automatically collected user data (user platform: OS, 
connection bandwidth …)
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LO Filtering

• Content filtering: based on content similarities 
(metadata-based) with other LOs (data scenario 2)

• Collaborative filtering: used when only ratings of LOs 
are available, no metadata (data scenario 3). It is carried 
out in two steps: 

• finding other users that exhibit similar rating patterns as the 
target user (called user neighborhood) by means of clustering 
algorithms 

• recommending LOs that have not been rated by target user 
according to their ratings by his neighborhood users
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Sifter Harvester (2)

Results screen
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Sifter Harvester (3)

Evaluation Report
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Sifter Harvester (4)

Evaluator



IIT e-learning

DOWNES, FOURNIER, REGOUI

LO Quality Prediction

• Calculating object’s similarity with other rated LOs 
based on their content metadata 

• Calculating user similarity

• clustering of the users based on their profiles (users with 
same preferences, competence and interests)

• co-rated LOs (rating patterns)

• Predict quality value of the unrated LO by the target 
user using target user neighborhood rating of similar LOs
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User profiles Similarity

Dim 2

Dim 1

Dim 3

Users

User similarity : User Space

A

B
C

Part II: Recommender system

User profile elements
User space dimensions
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Dim 2

Dim 1

Dim 3

LOs

LO similarity : LO Space

LO space dimensions

X

Y
Z

- Ratings (a dimension for each quality evaluation criterion),
- Some descriptive Metadata (Author, publisher, Last update …)

Part II: Recommender system

LO profiles Similarity
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(Content-based)
Neighboring LOs of 

Unrated LO

Active User
Active LO

1- Neighboring LOs of Unrated LO are 
computed based on content 

2- Neighboring Users of Active User are computed for 
All users based on Unrated LO’s neighboring LOs only 

(To ensure comparison of same category of LOs 
ratings)

(Unrated LO Neighbors-based)
Neighboring Users of 

Active User

Dim 2

Dim 1

Dim 3

LOs

X

Y

LO Space

Unrated LO 
Neighbors

Users

Dim 3

Dim 2

Dim 1

A

B
C

User Space

LO quality prediction

Clustering (non-supervised classification) of LOs & Users

Part II: Recommender system
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