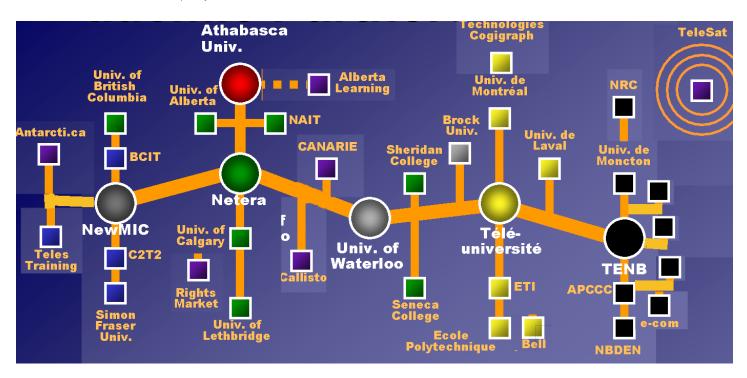
NRC · CNRC

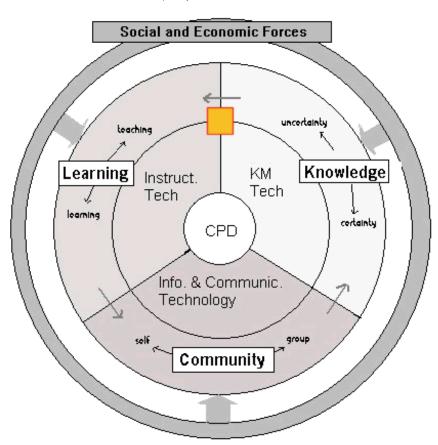
From Discovery to Innovation...

Design and Reusability of Learning Objects in an Academic Context: A New Economy of Education?

Stephen Downes, National Research Council eLearning: a challenge for universities.


Milan, November 12, 2002

Context


Context (2) eduSourceCanada

http://www.edusource.ca

Context (3)

This presentation looks at a small area in the overall picture of online learning

Theme

- The purpose of this paper is not to discuss the creation and use of learning objects *per se* but rather to look at systems for locating and distributing learning objects.
- A distributed model of learning object repositories is proposed. This model is based on a set of principles intended to create an open and accessible marketplace for learning objects, in essence, a learning object economy.

Contents

- 1. Introduction
- 2. The State of the Art
- 3. Problems and Issues
- 4. Design Principles
- 5. The Distributed Network

1. Introduction

- Two definitions of learning objects:
 - 1. IEEE, Wiley: any digital resource that can be reused to support learning
 - 2. Used in this paper: anything that is exchanged in what may be called the learning object economy.
- Note that this definition does not require that learning objects be of explicitly pedagogical design, and it does not require that the resources themselves be digital

2. The State of the Art

- Brief descriptions of common methods of locating and retrieving learning objects, specifically:
 - 1. Course Portals
 - 2. Course Packs
 - 3. Learning Object Repositories
 - 4. Learning Content Management Systems

2.1 Course Portals

- A website offered wither by a consortium of educational institutions or a private company working with educational partners that lists courses
- The purpose of a course portal is to enable a student to browse through or search course listings to simplify the student's selection of an online course.
- Examples: TeleEducation, Unext, Hungry Minds, Fathom

2.2 Course Packs

- Offered primarily by educational publishers
- Packages of learning materials collected to support a course.
- The instructor is expected to supplement the course pack with additional content, educational activities, testing and other classroom activities.
- Examples: WebCT Course Packs, XanEdu, MarcoPolo, Canada's SchoolNet

2.3 Learning Object Repositories

- Databases containing either
 - learning objects and learning object metadata, or
 - metadata only
- Most common form is a centralized database in which the learning object metadata is located on a single server or website and learning objects are located elsewhere
- Examples: Merlot, CAREO, POOL, NSDL

2.4 Learning Content Management Systems

- To create a course, therefore, a set of learning objects must be assembled into a package.
- Packages are created using a Learning Content Management System.
- Two major functions:
 - Provide authors with a means of locating learning objects,
 - Assemble learning objects into standards compliant learning packages (or courses).

3. Problems and Issues

- In general the issues have to do with system architecture and resource based on what I call the "silo model."
- On this model, resources are not designed or intended for wide distribution. Rather, they are located in a particular location, or a particular format, are intended for one sort of use only.
- The silo model is dysfunctional because it prevents, in some essential way, the location and sharing of learning resources.

3.1 Proprietary Standards

- A standard is proprietary when it is secret or when patents, copyrights or other restrictions prohibit its use.
- The use of a proprietary standard divides a distribution network
- Risks of proprietary standards:
 - Lack of support in new software
 - Licensing terms may change
 - Standards holder enjoys technological advantage
 - Choice of viewing software may be limited

3.2 Strict Standards

- It may be the case that the standard is too limiting for widespread use. (e.g. Criticisms of SCORM)
- In a similar manner, transport protocols may also be too strict.
- If the standard is too complex, use of the standard requires an involved process or development tool.

3.3 Monolithic Solutions

- Learning content management systems have become tightly integrated monolithic software bundles
- Purchasers of such systems are as a consequence committed to a single solution for all aspects of learning management – 3rd party solutions cannot be 'plugged in'.
- Issues:
 - Purchasers buy more than is desired
 - No means to outsource services

3.4 Closed Marketplace

- Exists when an owner of a learning content management system has only a limited selection of content to choose from.
- Usually established via exclusive licensing deals
- Issues:
 - It is difficult to access content from different libraries
 - It is difficult for new content providers to distribute their material
 - The system tends to favour large distributors, large institutions

3.5 Disintermediation

- A system is disintermediated when there is no form of assessment or review guiding the selection of learning resources.
- Some efforts to provide intermediation. Eg. Merlot's peer review process – but these are limited to a single repository and select body of reviewers
- Review often used as a 'gate-keeping' process, causing significant backlog
- In many system, no review available at all

3.6 Selective Semantics

- The tendency to view the network of learning objects and repositories as a stand-alone service on the world wide web, not integrated with or compatible with many other resources and services available
- An issue mostly of perception rather than implementation
- A network, for example, that standardized on SCORM would preclude from consideration resources which are useful to course designers but which may not be described as learning objects per se.

3.7 Digital Rights Mismanagement

- Major issues:
 - No simple DRM solution has been widely implemented.
 - In many implementations, digital rights management has been conflated with the idea of digital rights enforcement
 - Often a requirement to use specialized technology, software
 - Typically necessary to negotiate access with each separate supplier
 - No trusted fiduciary agents

4. Design Principles

- Intended to govern the development of an architecture for a distributed learning object repository network (DLORN)
- The purpose of the principles is to guide the description of the components employed, the standards followed, and the principles governing the operation of the network

4.1 Open Standards

- Protocols should be described, documented, and freely available to the public at large
- Purpose is to encourage interoperability with external systems, eg., libraries, museums
- Standards should be royalty free to ensure there are no *a priori* costs to implementation
- Enable, don't require

4.2 Infrastructure and Services Layer

- Infrastructure Layer The set of components in the infrastructure layer will be developed and distributed as royalty-free open source software
- Service Layer components with increased functionality, offering an improvement in design or services over and above the functionality provided by the infrastructure layer

4.3 Component-based, Distributed

- Designed not as a single software application, but rather, as a set of related components, each of which fulfills a specific function in the network as a whole
- Any given component of DLORN may be replicated and offered as an independent service
- It is anticipated that there will be multiple instances of each component of the DLORN infrastructure
- Provides robustness, ensures there is no bottleneck over which a single supplier or service has control

4.4 Open Access, Open Market

- Open Access Any provider of learning materials may prepare and distribute learning materials through DLORN
- Open Market No prior restraint imposed on the distribution model selected by participants in DLORN
- Purposes:
 - To allow different business models
 - To ensure that users are not locked in to one supplier
 - To provide widest range of content options
 - To ensure costs reflect true market values

4.5 Semantic Web and Third Party Metadata

- Multiple parties may provide metadata describing a given learning resource
- Purposes:
 - Evaluation of learning materials
 - Annotation
 - Third-party services
- DLORN an extension of the semantic web
 - Should incorporate sector-specific ontologies
 - Offers widest reach possible
 - Reduced duplication of effort

4.6 Digital Rights

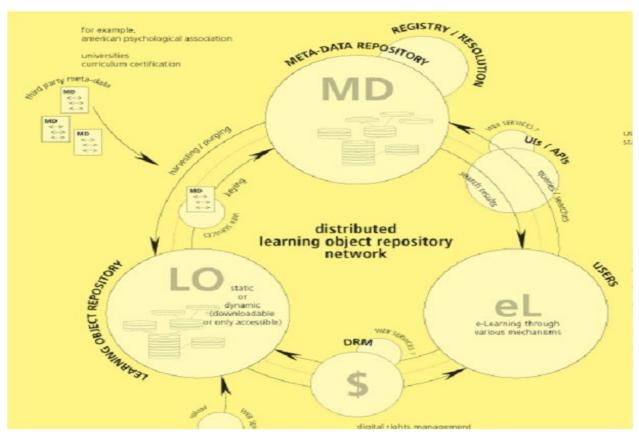
- Major principle: simple Digital Rights Management
- Brokered single-source DRM to allow consumer choice
- Consumer rights equally important
- Rights enforcement an application-specific feature

5. The Distributed Network

 What we are proposing is a set of inter-related applications distributed over the internet and communicating with each other.

5.1 Creating a Network

- Three major steps:
 - Separating the functionality of an LCMS / LMS architecture into distinct, stand-alone components that communicate over TCP/IP
 - 2. Allowing (encouraging) the development of multiple instances of these components
 - 3. Providing indexing or registries of these instances



5.2 Core Components

- Learning Object Repository hosted by vendors on vendor sites, provides vendor metadata and learning object servers
- Metadata Repository hosted elsewhere, harvests metadata from vendors and amalgamates, allows queries from eLearning systems.
- eLearning system queries metadata repository, user selects resource, retrieves resource from learning object repository, displays

Core Components (2)

5.3 Contrast to Library Model

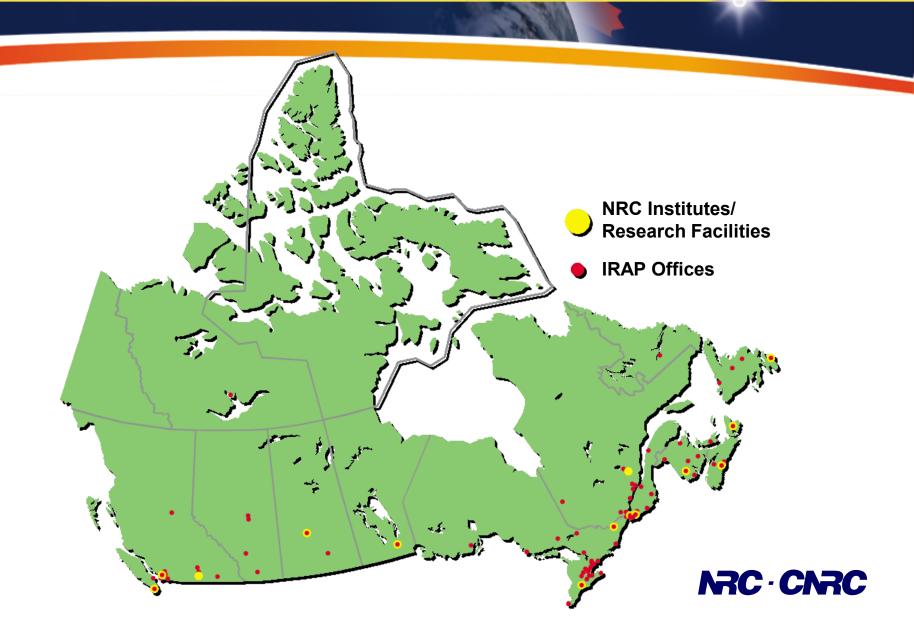
- Most implementations view learning objects as though they were books in a library that are acquired, indexed and deployed
- This implementation views learning objects as online services and includes:
 - Learning objects, properly so-called
 - Other academic work, such as journal articles
 - In-person classes and seminars
 - Access to instructors, coaches and tutors

5.5 Component Registry Service

- In the network proposed, there are multiple instances of each component. It is necessary to provide indexing or registry services.
- A vendor wishing to offer learning objects through the network will need to declare that the repository exists
- The registry system envisioned is consistent with existing approaches to the provision of services on the internet

5.6 Secondary Components

- These include:
 - A system of third-party metadata
 - A digital rights system
 - A learner (user) information system
 - A reporting or tracking system
- Major features:
 - The components are optional: you develop (or buy) them and use them only if you need them
 - For any given component, select one of many instances
 - These components may reside outside your own system



Resources

- This Paper: http://www.downes.ca/files/milan.doc
- A Web Services Primer -http://www.xml.com/pub/a/2001/04/04/webservices/
- The Learning Object Economy <u>http://www.downes.ca/files/Learning Object Economy.htm</u>
- EduSource http://www.edusource.ca/
- Stephen Downes http://www.downes.ca

NRC: A NATIONAL ORGANIZATION

