Executive Summary

Data literacy is the ability to collect, manage, evaluate, and apply data, in a critical manner. It includes the skills necessary to discover and access data, manipulate data, evaluate data quality, conduct analysis using data, interpret results of analyses, and understand the ethics of using data.

These are core skills required to support key competencies in intelligence and trend analysis, mission-driven metric reporting, health and human response to stress and injury, training and development functions, deployment, supply management and logistics, and information warfare, to name a few.

Competency Model or Framework

Data literacy includes the skills necessary to discover and access data, manipulate data, evaluate data quality, conduct analysis using data, interpret results of analyses, and understand the ethics of using data, where by data we mean the representation of facts in media. Data can be structured or unstructured, can be analyzed as a batch or in a stream, and can be presented in media as varied as text, numbers, graphics, images, sound, or video.

Data literacy derives from, and can be seen as including, skills and competencies related to data management, data-based analysis and decision-making. It clear that data literacy involves much more than ‘reading’ and ‘writing’ with data and includes but is not limited to the framing of the problem or context of use, the data set itself, application, and testing. As such, it is useful to think of data literacy in the context of the full data workflow, models of which can be drawn from data analytics, machine learning, and statistical analytics.

With the full workflow in mind, this study analyzed the sets of data literacy competencies and skills defined across 20 separate studies and, while finding no unanimity or agreement among the full list, was nonetheless able to identify broad similarities. In particular, to evaluate the definition of data literacy already in use by Databilities, this study indicates a need to consider several additional key competencies, for example: data ethics, data governance, and data systems and tools.

Additionally, this study finds that data literacy is a concept that can be applied equally to both individuals and organizations, though both the description of data literacy as well as the assessment of data literacy will vary in the given context. Framing elements of data literacy as competencies, and employing a widely used model describing knowledge, skills and attitude, an overall framework for describing individual data learning competencies and organizational data literacy capabilities is proposed.

Evaluation or Assessment Framework

It is important to be able to evaluate or assess the level of data literacy competencies individually or across the organization for the purpose of assessing operational readiness and for the purpose of planning future training and development. This report first provides an overview of some data literacy assessment programs, then considers some data literacy assessment models, and finally considers some data literacy methods.

Though they vary in content and format, the assessment models considered are consistent in the requirement that assessments be based on a formal, or structured, representation of the knowledge being assessed. There is however little if no agreement on what such a model should look like. Though the formal creation and validation of such a model is beyond the scope of this study, it considers the essential elements of such a model to offer insight on what such a model would look like.

What is offered here is a model based on a slightly modified full list of competencies drawn from the data literacy studies cross-referenced with a comprehensive skills taxonomy. To this end, and for the sake of consistency with much of the work done previously, a slightly modified version of Bloom’s taxonomy is used to organize them. This provides a format framework for assessment and evaluation.
It is arguable that a single-factor measure of data literacy ‘levels’ as employed by numerous data literacy assessment schemes is insufficient to account for the variability in both the set of data literacy competencies and also the varying degree to which each competency is required in different job functions or roles. Accordingly, a role-defined data literacy model is proposed. This model illustrates the calculation of a role-defined data literacy profile, as well as the process used to create actual competency profiles.

This report also describes and assesses the relative merits of four major forms of assessment identified in the literature: self-report, skills test (open response), skills test (multiple choice), and analysis. It describes means of independently validating the reliability and validity of assessment instruments already well-established in the literature.

Teaching Framework

There are few data literacy training initiatives extant, and no organization or institution-wide examples were found. So, in the context of data literacy development in a Canadian Forces context, two area of consideration are important: models and designs for data literacy program development in general, and examples of extant data literacy training programs and curricula.

The development of data literacy in an organization occupies a space between two extremes. On the one hand, we may find data literacy among other types of information and communication competencies, such as digital literacy or information management programs. On the other hand, we might think of data literacy as a first step in the development of higher-level competencies such as data architect or information management. Either approach envisions a large-scale and complex learning initiative.

But it need be neither, provided we think of data literacy not such as knowledge or content to be used, but rather, as a part of other processes and strategies employed to achieve real objectives or outcomes. This accords with the recommendations found in the literature, for example, to focus on performance rather than content knowledge and to ensure it encompasses real operational challenges using authentic data and examples.

By way of example, we look briefly at five data literacy pilot projects evaluated in current literature, and survey some services and resources supporting data literacy training.
Contents

Executive Summary ... 3

Competency Model or Framework .. 3

Evaluation or Assessment Framework .. 3

Teaching Framework ... 4

Contents .. 5

Competency Model or Framework .. 6

Data Literacy .. 6

Data ... 7

Data Literacy Models ... 8

Data Workflows .. 10

Competency Models .. 11

Defining Data Literacy ... 14

Evaluation or Assessment Framework .. 16

Assessment Programs .. 16

Data Literacy Model-Based Assessment ... 19

Levels ... 22

Role-Defined Data Literacy .. 23

Assessment Methods ... 23

Validity and Reliability .. 27

Teaching Framework ... 27

Developing Data Literacy ... 27

Data Literacy Programs ... 28

Teaching and Learning Methods .. 30

Individual Learning Resources ... 31

References .. 33

Appendices .. 39

Appendix 1 .. Error! Bookmark not defined.
Competency Model or Framework

Data Literacy

A Brief History

The topic of data literacy began to emerge from discussions of database and data management, digital literacy and information literacy in the mid 2010s.

A major early definition was offered by Ridsdale, et al. (2015) working at Dalhousie University: “Data literacy is the ability to collect, manage, evaluate, and apply data, in a critical manner” (p. 2). The authors adopted a competency-based characterization:

“We define the core skills and competencies that comprise data literacy, using a thematic analysis of the elements of data literacy described in peer-reviewed literature. These competencies (23 in total) and their skills, knowledge, and expected tasks (64 in total) are organized under the top-level elements of the definition (data, collect, manage, evaluate, apply) and are categorized as conceptual competencies, core competencies, and advanced competencies.”

Writing from the Open University, Wolff, et al. (2016) expanded the definition. “Data literacy is the ability to ask and answer real-world questions from large and small data sets through an inquiry process, with consideration of ethical use of data.” They define data literacy in terms of skills and outcomes:

“It is based on core practical and creative skills, with the ability to extend knowledge of specialist data handling skills according to goals. These include the abilities to select, clean, analyse, visualise, critique and interpret data, as well as to communicate stories from data and to use data as part of a design process.”

In a report from Statistics Canada, Bonikowska, Sanmartin and Frenette (2019) adopt a competencies-based approach derived from a comparison of existing digital competencies frameworks. They write that data literacy is the

“ability to derive meaningful information from data” (Sperry 2018). “To summarize, a data literate individual would, at minimum, be able to understand information extracted from data and summarized into simple statistics, make further calculations using those statistics, and use the statistics to inform decisions. However, this definition is context-dependent...”

Gartner (2019) addresses data literacy from a management perspective. "Data literacy" is formally called out as a new core competency as part of a clear commitment to the organization and leadership valuing "information as a strategic asset." In a data literate organization, training programs (online and/or in-person; internal and/or external) are available and supported across all required levels of proficiency. (Duncan, et al. 2021)

Canada’s Department of National Defense, observing that “literacy broadly means having competency in a particular area,” argues that “data literacy includes the skills necessary to discover and access data, manipulate data, evaluate data quality, conduct analysis using data, interpret results of analyses, and understand the ethics of using data.” (2019)

Major Themes

The following major themes emerge from the discussion of data literacy over the last decade:

- Data literacy as a set of skills or competencies
- The idea of deriving meaningful information from data
- The data lifecycle or data workflow
• Complexity of skills for differing roles
• Data literacy as individual and corporate capacities

Data
The core concept in data literacy is ‘data’. But what is data? The word has been defined extensively over the years. Some useful definitions include:

• “An object, variable, or piece of information that has the perceived capacity to be collected, stored, and identifiable.” (Bhargava, et al., 2015)

• “The representation of facts as text, numbers, graphics, images, sound, or video” (The Department of National Defence and Canadian Armed Forces Data Strategy, 2019)

What is important here is to note the distinction between data and statistics. The latter are quantifications based on counting or surveys. Data, however, may take many forms, and need not be numerical only.

Types of Data
Structure
Data is ‘structured’ if data elements contain a consistence sequence of parts. For example, structured data could consist of a formally defined array of individual values, a hash or table of key-value pairs, or a set of subject-verb-object triples, as found in Resource Description Format (RDF). Semi-structured data is obtained from less formally defined sequences of parts, such as defined by an input form, a news article, or application programming interface (API). Unstructured data, also referred to as ‘blobs’, are, from the perspective of data management, one single undifferentiated whole (Lorent, 2021)

Velocity
The ‘velocity’ of data refers to the rate at which it is received, either as original data, or as updates to existing data. Velocity may vary according to how the data is received by a data management system, and how it is output by that system. If all data is received at a specific time interval, it is referred to as ‘batch’ data. Conversely, if data flows in and out of a system continuously, it is referred to as a ‘stream’.

Figure 1 - Data Types: Structure

Figure 2 - Data Types: Velocity
 Formats
As mentioned previously, data may exist in non-numerical formats, including text, images, audio, video, multimedia, and more. Data formats are often defined according to their corresponding media format such that a media type (also known as a Multipurpose Internet Mail Extensions or MIME type) indicates the nature and format of a document, file, or assortment of bytes. MIME types are defined and standardized in IETF’s RFC 6838 (Freed, et al., 2013). Data types may also be characterized less formally, according to the use to which the date is put, for example, as observational, experimental, derived (or compiled), simulation, or reference (OSU, 2021).

 Data Model
A data model is an abstract model that organizes elements of data and standardizes how they relate to one another and to the properties of real-world entities (Nikou & Tziachris, 2022). The data model will define the structure and format of the data, as described above, identify principles or rules embodied in the data, and form the basis for the application of the data in practical contexts. It forms the underlying logic for the ‘model-view-controller’ (MVC) database model employed by most data management systems today.

 Data Literacy Models
Most work in data literacy falls into one of several models or interpretations. “They each have a different focus which tends to reflect the context in which it was derived. They also have a different level of granularity, not just between the definitions, but also within them.” (Wolff, et al., 2016) Schield (2004) describes these as ‘perspectives’, for example, the ‘critical thinking’ perspective and the ‘social science data’ perspective.

Figure 4 - Data Literacy Models. Schield, 2004, p.8

This section describes the models or perspectives found in the literature.

 Data Stewardship Model
This model describes approaches to data literacy that emphasize data acquisition, curation, quality and deployment. A prototypical example of this approach is the Statistics Canada descriptions of data quality and the data journey.

“Data literacy also means having the knowledge and skills to be a good data steward including the ability to assess the quality of data, protect and secure data, and their responsible and ethical use.” (Statistics Canada, 2020)
Analysis and Decision-Making Model

This model is focused mostly on the use of data to support analytics and decision-making. The best current example of this model is the collection of approaches taken by members of the Data Literacy Project, including Qlik (a data analytics company), Accenture, Cognizant, Experian, Pluralsight, the Chartered Institute of Marketing, and Data to the People. The approach is best summarized by the Data Literacy Project website: “data answers questions faster, provides powerful insights and drives smarter critical decision-making.”

A good example of the sort of definition informing this model is found in Vahey et al. (2006): “data literacy includes the ability to formulate and answer questions using data as part of evidence-based thinking; use appropriate data, tools, and representations to support this thinking; interpret information from data; develop and evaluate data-based inferences and explanations; and use data to solve real problems and communicate their solutions.”

While there is overlap between this model and the information literacy model, the academic basis for this model is derived from work in critical thinking, drawing for example from Deahl (2014) who defines a skill set for data literacy that includes ‘understanding data’, checking data for ‘bias and inaccuracy’, and ‘supporting arguments using data’ (pp. 41-42).

Information Literacy Model

“According to Hunt (2004), data literacy education should borrow heavily from information literacy education, even if the domain of data literacy is more fragmented than the field of information literacy.” (Koltay, 2016).

Similarly, Maybee & Zilinski (2016) write, “The emerging construct of data literacy has typically been closely related to information literacy.” Drawing from information literacy coursework, researchers “have used the ACRL’s (2000) information literacy standards and initial research findings to suggest lists of competencies for data literacy... the various models are comprised of skills related to accessing, managing, communicating, preserving, and ethically using data for both undergraduate and graduate education.” (Ibid).

Science and Research Data Literacy Model

This model of data literacy emphasizes aspects of data related to computer science, mathematics and statistics. Though based on principles of data stewardship, it defines a set of data skills including data awareness, forms of statistical representation, the ability to analyze, interpret and evaluate statistical information, and communication of statistical information (Australian Bureau of Statistics, 2010). Koltay (2016) writes that related concepts include research data services, data governance (he notes, “valid data governance may require identifying ‘people who informally already have a level of accountability for the data they define, produce and use to complete their jobs or functions’” p. 305).

Maybee & Zilinski (2016) write, “challenges have been made concerning the efficacy of generic approaches to information literacy, such as the standards, for enabling people to use information in the various contexts in which they live and work (e.g., Bruce, 1997; Lloyd, 2010).” These objections have led to more context-specific models of data literacy development, and in particular to (Bruce, 2008) “data informed learning as an approach to data literacy that shifts the focus from acquiring generic data-related skills to students learning how to use data in disciplinary contexts.”

Social Engagement Model

This model distinguishes between the need for everyday uses of data from the deeper requirements of data science. It may be a nascent model. Thus far, it is only really articulated in a single source (Rahul Bhargava, et. al., 2015), though it has its origins in a broader definition of literacy, as exemplified by Robinson
(2005), who talks of literacy as enabling individuals to achieve their goals, to develop their knowledge and potential, and to participate fully in their community and wider society” (p. 13).

Data Workflows

What is data literacy? In this section we look more closely at the nature of artificial intelligence and machine learning, two disciplines already defined by their relation to data, to understand what might be understood as the full ‘data workflow’. This section makes it clear that data literacy involves much more than ‘reading’ and ‘writing’ with data and includes but not limited to the framing of the problem or context of use, the data set itself, application and testing.

Applications of Data Analytics

With the employment of big data analytics for machine learning and artificial intelligence a range of analytics applications have been defined, including especially the following:

- **Diagnostic** - draw an inference about a piece of data based on the patterns detected in sample or training data, for example, to perform recognition, classification or categorization tasks.
- **Predictive** - answer the question, what will (probably) happen, based on an identification of patterns and trends in existing data, and an extrapolation of that pattern or trend to probably future states.
- **Prescriptive** - recommend solutions generated from rules or principles, limits or bounds of operation, equations or balancing mechanisms, or user input.
- **Generative** - employ previous analyses of data in other to generate original content based on parameters or properties of the data studied, combined with predictions or requirements for future data.
- **Deontic** - look at expressions of sentiments, needs, desires, and other such factors to determine what sort of outcome would be best, and then works toward achieving that outcome.

Machine Learning Engineering

The term ‘machine learning’ was coined by Arthur Samuel (1959) for IBM to describe the application of statistical algorithms to learning problems, for example, how to play checkers. In such a case, ‘data’ consists of the sequence of moves and potential moves of an opponent, and the context of application is defined by the rules for playing checkers.

Following this model, the typical machine learning application is comprised of three major elements: the data itself, the machine learning model, and the algorithm or code used to apply the model and data into a final product. Machine learning engineering describes the construction and use of these three elements:

- **Data engineering**, which describes the acquisition, exploration, cleaning, labeling and management of data
- **Model engineering**, which consists of the development or training of the model, testing and evaluation, and packaging for use in an application
- **Deployment**, which describes how the model is served and used, performance evaluation, and performance logging (Visengeriyeva, et al., 2022)
Statistical Research and Analysis

Statistical research methods workflows emphasize "the importance of asking questions throughout the statistical problem-solving process (formulating a statistical investigative question, collecting or considering data, analyzing data, and interpreting results), and how this process remains at the forefront of statistical reasoning for all studies involving data." (Bargagliotti, et al., 2020).

It also emphasizes "consideration of different data and variable types, the importance of carefully planning how to collect data or how to consider data to help answer statistical investigative questions, and the process of collecting, cleaning, interrogating, and analyzing the data." In this respect it resembles machine learning and data analytics workflows (above and below).

The Guidelines for Assessment and Instruction in Statistics Education II (GAISE II) by American Statistical Association define four major elements of the workflow:

- Question formulation
- Data collection and investigation
- Data analysis
- Interpretation of results

Big Data Analytics

Big data analytics follows the development of machine learning analytics and adapts it for very large bodies of data. Thus, while the workflow is similar, additional elements are required to compose and comprehend the data and data models. A big data analytics workflow management application will consist of the following elements:

- Data sources, including a database management system (DBMS), data warehouse (consisting of data ‘streams’, ‘pools’ and ‘lakes’)
- Data management tools for preprocessing, filtering, cleaning, and transformation
- A data modeling tool, including model definition and evaluation
- Results analysis and visualization tools

(Assuncao, et al., 2014)

Competency Models

The analysis in this section combines the work outlined in the previous sections to achieve a synthesis of the concept of 'data literacy'. For the purposes of this presentation, data literacy is defined as a set of one or more 'competencies', though it should be clear that not all studies reported above do so. We begin with a brief outline of the concept of the 'competency' and then proceed with the analysis.
Competencies

Competencies are commonly defined as “a set of basic knowledge, skills, abilities, and other characteristics that enable people at work to efficiently and successfully accomplish their job tasks.” Following Oberländer, et al. (2020) we use the term ‘competencies’ here to draw on a well-established concept that includes knowledge, skills, abilities, and other characteristics (KSAO).

The concept of competencies also includes the requirement of evidence for competencies. Thus, employing a definition using competencies is well suited to a discussion of data literacy that includes the fostering and assessment of knowledge, skills, and abilities.

Analysis

We drew on 20 studies that offered a (more or less) competency-based definition of data literacy and compared the set of competencies each proposed. The selection of sources was intended to draw from and be representative of various data literacy models (see above). The full set of studies is described and summarized in the appendix below.

In assigning the competencies interpretation was required, as the studies did not all employ the same terminology. Accordingly, a brief outline of what is meant by each competency defined is contained in an appendix below. Below is the result of the analysis:

<table>
<thead>
<tr>
<th>Data...</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awareness</td>
<td>x</td>
</tr>
<tr>
<td>Dispositions</td>
<td>x</td>
</tr>
<tr>
<td>Strategy/Culture</td>
<td>x</td>
</tr>
<tr>
<td>Plan, Implement, Mon</td>
<td>x</td>
</tr>
<tr>
<td>Inquiry Process</td>
<td>x</td>
</tr>
<tr>
<td>Discovery / Explore</td>
<td>x</td>
</tr>
<tr>
<td>Ethics</td>
<td>x</td>
</tr>
<tr>
<td>Gathering / Collection</td>
<td>x</td>
</tr>
<tr>
<td>Caricature</td>
<td>x</td>
</tr>
<tr>
<td>Communities</td>
<td>x</td>
</tr>
<tr>
<td>Requirements</td>
<td>x</td>
</tr>
<tr>
<td>Valuation</td>
<td>x</td>
</tr>
<tr>
<td>Evaluation/Assessment</td>
<td>x</td>
</tr>
<tr>
<td>Informed Decision-making</td>
<td>x</td>
</tr>
<tr>
<td>Governance / Stewardship</td>
<td>x</td>
</tr>
<tr>
<td>Standards</td>
<td>x</td>
</tr>
<tr>
<td>Description/Metadata</td>
<td>x</td>
</tr>
<tr>
<td>Conversion, Interpolable</td>
<td>x</td>
</tr>
<tr>
<td>Management</td>
<td>x</td>
</tr>
<tr>
<td>Preservation</td>
<td>x</td>
</tr>
<tr>
<td>Glancing</td>
<td>x</td>
</tr>
<tr>
<td>System & Tech</td>
<td>x</td>
</tr>
<tr>
<td>Policy</td>
<td>x</td>
</tr>
<tr>
<td>Quality</td>
<td>x</td>
</tr>
<tr>
<td>Security</td>
<td>x</td>
</tr>
<tr>
<td>Manipulation</td>
<td>x</td>
</tr>
<tr>
<td>Statistics & Reasoning</td>
<td>x</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>x</td>
</tr>
<tr>
<td>Analyze</td>
<td>x</td>
</tr>
<tr>
<td>Interpretation</td>
<td>x</td>
</tr>
<tr>
<td>Modeling/Architecture</td>
<td>x</td>
</tr>
<tr>
<td>Data Science and ML</td>
<td>x</td>
</tr>
<tr>
<td>Citation & Sharing</td>
<td>x</td>
</tr>
<tr>
<td>Visualization</td>
<td>x</td>
</tr>
<tr>
<td>Storytelling</td>
<td>x</td>
</tr>
<tr>
<td>Present Data Verbally</td>
<td>x</td>
</tr>
<tr>
<td>Change</td>
<td>x</td>
</tr>
<tr>
<td>Using/Innovating With</td>
<td>x</td>
</tr>
<tr>
<td>Identifying Problems</td>
<td>x</td>
</tr>
<tr>
<td>Generate Data</td>
<td>x</td>
</tr>
</tbody>
</table>

Figure 8 - Competency Analysis Table

The diagram below illustrates the frequency of each competency:
In light of the fact that a small-scale pilot version of a Canadian Armed Forces data literacy survey was conducted last year in conjunction with Databilities, it is particularly relevant to compare the list of competencies identified by that company with the overall list of competencies. Here is the comparison:

![Figure 9 - Competency Frequency Table](image-url)

In light of the fact that a small-scale pilot version of a Canadian Armed Forces data literacy survey was conducted last year in conjunction with Databilities, it is particularly relevant to compare the list of competencies identified by that company with the overall list of competencies. Here is the comparison:
Figure 10 - Competency Frequencies Mapped to Databilities

Column 13 represents the list of competencies identified by Databilities. We can see that they identify several that are frequently cited by other studies, including data discovery and exploration, data-informed decision-making, data management, data analysis, and data visualization. However, it is significant that three major competency areas are not covered by the Databilities model, as highlighted in orange: data ethics, data governance or stewardship, and data systems and tools.

The list of competencies identified also makes it clear that data literacy does not fall into any single category described above. It contains elements of critical thinking, statistical reasoning, data management, and scientific research. Data literacy therefore represents a certain level of competency across a broad range of data-related skills, not a narrowly defined subset of some other type of literacy.

Defining Data Literacy

Individual and Organizational Data Literacy

Another trend evident in the literature review was the distinction between individual data literacy and organizational data literacy. The former was most often discussed by papers and research studies focused on education and training, while the latter was most often treated by publications, especially from consulting firms, discussing organizational and management strategies. This shows the importance of not depending on one particular type of literature or branch of inquiry.

Just as we say a range of data literacy models, above, organizational data literacy can also be represented using various models. For example, organizational data literacy may be subdivided according to organizational unit, for example, ‘team’, ‘division’ or ‘branch’, and described according to the scope of that unit’s activities.
Alternatively, it can be described according to organizational properties, such as tools and systems, employee skills and capabilities, and organizational procedures and mechanisms.

Figure 11 - Classifications of Organizational Data Literacy

For the purposes of this report, it was determined that each of the competencies referenced in the previous section could be said to be defined either from an individual or organizational perspective. But what does that mean from the perspective of defining each individual competency?

Competencies

It is beyond the scope of this report to analyze the concept of the competency. To this end, we employ a widely used model describing knowledge, skills and attitude. Specifically, “a competency is a set of skills, related knowledge and attributes that allow an individual to successfully perform a task or an activity within a specific function or job” (Salleh, et. al., 2015, United Nations Industrial Development Organization (UNIDO), 2002, 10).

As will be relevant below, it should be noted that competencies are described in ways that are observable and measurable, linked to the context or environment, transferable (i.e., can be learned and applied in new contexts), and based on performance.

To define organizational competencies, an analogous set of elements was defined: organizational or operational definitions; organizational systems, tools and capacities; and organizational practices. This definition is informal, and these terms could be modified or refined through additional research.

<table>
<thead>
<tr>
<th>Individual</th>
<th>Organizational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>Definitions</td>
</tr>
<tr>
<td>Skills / Competencies</td>
<td>Capacities</td>
</tr>
<tr>
<td>Attitudes</td>
<td>Practices</td>
</tr>
</tbody>
</table>

Figure 12 - Individual and Organizational Data Literacy
Example: Data Visualization

To obtain the full competency definition, and hence, to fully define data literacy, each of these six attributes could be provided. It is understood that the emphasis and importance of these attributes may vary from context to context and according to the competency being defined. Below is an example of the attributes defined in the specific case of ‘data visualization’:

<table>
<thead>
<tr>
<th>Individual</th>
<th>Organizational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>Definitions</td>
</tr>
<tr>
<td>- knows visualization formats</td>
<td>- standard visualizations for key data</td>
</tr>
<tr>
<td>- understands data representation</td>
<td>- visualizations referenced to original data</td>
</tr>
<tr>
<td>Skills / Competencies</td>
<td>Capacities</td>
</tr>
<tr>
<td>- can create visualizations from data</td>
<td>- staff have access to data visualizations</td>
</tr>
<tr>
<td>- can generate meaning from visualizations</td>
<td>- staff includes data visualization expertise</td>
</tr>
<tr>
<td>Attitudes</td>
<td>Practices</td>
</tr>
<tr>
<td>- is comfortable working with visualizations</td>
<td>- maintains data visualization software tools</td>
</tr>
<tr>
<td>- recognizes importance of visualizations</td>
<td>- data visualization part of reports workflow</td>
</tr>
</tbody>
</table>

![Figure 13 - Individual and Organizational Data Literacy Competencies and Capabilities](image)

Evaluation or Assessment Framework

It is important to be able to evaluate or assess the level of data literacy competencies individually or across the organization for the purpose of assessing operational readiness and for the purpose of planning future training and development.

In this section we first provide an overview of some data literacy assessment programs, then consider some approaches or models of data literacy assessments, and finally consider some data literacy methods.

Assessment Programs

Following are some examples relevant assessment programs illustrating key features of competency assessment in data literacy and related areas.

OECD

Although not addressing data literacy specifically, it is worth considering in this context the OECD Programme for the International Assessment of Adult Competencies (PIAAC) and the Programme for International Student Assessment (PISA). PISA in particular “has become accepted as a reliable instrument for benchmarking student performance worldwide, and that PISA results have had an influence on policy reform in the majority of participating countries/economies” (Breakspear, 2012). While PISA is specifically focused on 15-year-old students, PIAAC, assesses “measures adults’ proficiency in key information-processing skills - literacy, numeracy and problem solving - and gathers information and data on how adults use their skills at home, at work and in the wider community” (Kirsch & Thom, 2016).

These tests are standardized objective tests, that is, they are defined to measure a specific range of competencies, and the assessments present questions to be answered or tasks to be completed, similar in form to a test or examination at a school or university. Specifically, in the case of PIACC literacy assessment,
participants were asked “access and identify tasks require respondents to locate information in a text, integrate and interpret tasks involve relating parts of one or more texts to each other, and evaluate and reflect tasks require the respondent to draw on knowledge, ideas or values” (Kirsch & Thorn, 2016, 2.2.1.3).

OECD has begun to address some questions more directly related to competencies related to data literacy, as for example in its study of the question “are 15-year-olds prepared to deal with fake news and misinformation?” It reports that “An average of 54% of students in OECD countries reported being trained at school on how to recognise whether information is biased or not,” with Canada ranking with above-average performance abilities and opportunity to learn (see diagram) and that “education systems with a higher proportion of students who were taught whether information is subjective or biased were more likely to distinguish fact from opinion” (Suarez-Alvarez, 2021 113).

Guidelines for Assessment and Instruction in Statistics Education (GAISE)

Endorsed by the American Statistical Association, the Guidelines for Assessment and Instruction in Statistics Education (GAISE) emphasize that there is no one route to teaching and assessing statistical literacy and notes that “mastering specific techniques is not as important as understanding the statistical concepts and principles that underlie such techniques” (GAISE, 2016, 8).

The framework of essential concepts and 22 examples emphasize the integration of statistical reasoning in the context of real-world examples. Students are asked about the investigative process, which includes formulating questions, considering data, analyzing data, and interpreting results, a pattern resembling the data analytics workflow described above. These goals “require assessments of the students’ statistical understanding through their written communication. For example, students should be able to interpret and draw conclusion from standard output from statistical software” (Johnson, 2018).
For example, in the assessment above, the student is presented statistical data in the form of a graph and asked to answer questions interpreting the information depicted. The question involves recognition of patterns in the data as well as the use of these patterns for prediction or extrapolation.

Eckerson Group Data Literacy Imperative

By contrast with the OECD and GAISE programs, the Eckerson Group describes data literacy assessment specifically and includes assessment not only of individual data literacy but also of the organization (Wells, 2021). Assessments are based initially on a comprehensive Data Literacy Body of Knowledge (DLBOK) defined by the organization. The DLBOK is used for gap analysis and training program development.

“Individual assessment is only the beginning. It is the foundation upon which organizational assessment is built, and organizational assessment is an essential process when building a culture of data literacy. Literacy assessment with business impact is performed at three levels—by individual, by role, and by group.”
Figure 16 - Data Literacy Assessment Process, Wells, 2022

A data literacy assessment based on the Eckerson DLBOK can be viewed at eLearning Curve (2022). It offers a set of 50 questions testing the respondent’s data literacy knowledge, skills and attitude through questions about terminology, processes, tools, functions, and expectations.

Figure 17 - Data Literacy Assessment Example, eLearningCurve, 2022

Data Literacy Model-Based Assessment

The examples in the previous section, though they vary in content and format, are consistent in the requirement that assessments be based on a formal, or structured, representation of the knowledge being assessed. There is however little if no agreement on what such a model should look like.

The formal creation and validation of such a model is well beyond the scope of this study. However, it is important to consider the essential elements of such a model and to offer insight on what such a model would look like, for the purpose of further discussing the assessment of data literacy and mechanisms for developing or improving it.

Data Literacy Model-Based Assessment

In the analysis of data literacy competencies described in the first section of this report we obtained an unstructured list of competencies. These competencies were organized into different categories by various studies, but there was no consistency whatsoever in the categorization scheme from study to study.
What is offered here is a model based on a slightly modified full list of competencies drawn from the data literacy studies cross-referenced with a comprehensive skills taxonomy. Again, there is a range of taxonomies to choose from, and a detailed discussion of these taxonomies is beyond the scope of this report, therefore for the sake of consistency with much of the work done previously a slightly modified version of Bloom’s taxonomy is used (Bloom, 1956).

While Bloom’s taxonomy is best known for six levels of cognitive skills development (from ‘remembering’ to ‘evaluation’) in fact three separate taxonomies were described: cognitive, affective and psychomotor. These can be thought of corresponding with the already-described taxonomy of knowledge, attitudes and skills, respectively.

![Bloom's Taxonomy](image)

Figure 18 - Bloom’s Taxonomy

There are some caveats to this use. First, while Bloom’s is often thought of in terms of *levels* of achievement, the elements in each of the three domains are interpreted specifically as a *taxonomy*, with no presupposition as to progression through stages or higher degrees of attainment. Progression, rather, ought to be seen as occurring *within* each element (more on this below). This we would say that these elements can be represented as distinct skills or competencies.

Further, this taxonomy needs to be *extended* to accommodate both individual and organizational competencies. For this purpose, we revisit the definition of data literacy competencies from above.

<table>
<thead>
<tr>
<th>Bloom’s</th>
<th>Individual</th>
<th>Organizational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive</td>
<td>Knowledge</td>
<td>Definitions</td>
</tr>
<tr>
<td>Psychomotor</td>
<td>Skills / Competencies</td>
<td>Capacities</td>
</tr>
<tr>
<td>Affective</td>
<td>Attitudes</td>
<td>Practices</td>
</tr>
</tbody>
</table>

Figure 19 - Bloom’s Taxonomy Adapted to Individual and Organizational Competencies

The following three subsections briefly expand this model, mooting possible definitions for each element.
Knowledge

<table>
<thead>
<tr>
<th>Individual</th>
<th>Organizational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>- Has or uses data in some way</td>
</tr>
<tr>
<td>- Know what data is, recognize data vs non-data</td>
<td>- Provides mechanisms for data access</td>
</tr>
<tr>
<td>Comprehension</td>
<td>- Data can be used as input in tools and systems</td>
</tr>
<tr>
<td>- Know methods to read data, comprehend data</td>
<td>- Data can be accessed in different views, formats</td>
</tr>
<tr>
<td>Application</td>
<td>- Data can be pooled or connected</td>
</tr>
<tr>
<td>- Know how data can be used</td>
<td>- The are organizational data quality standards</td>
</tr>
<tr>
<td>Analysis</td>
<td>- Data is recorded and produced in the organization</td>
</tr>
<tr>
<td>- Understand parts of data, types of data</td>
<td></td>
</tr>
<tr>
<td>Synthesis</td>
<td></td>
</tr>
<tr>
<td>- Know ways to join of connect data</td>
<td></td>
</tr>
<tr>
<td>Evaluation</td>
<td></td>
</tr>
<tr>
<td>- Identify quality data, appropriate data</td>
<td></td>
</tr>
<tr>
<td>Creation</td>
<td></td>
</tr>
<tr>
<td>- Create data</td>
<td></td>
</tr>
</tbody>
</table>

Figure 20 - Bloom's Taxonomy for the Knowledge Domain Adapted to Individual and Organizational Competencies

Skills / Competencies

<table>
<thead>
<tr>
<th>Individual</th>
<th>Organizational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perception</td>
<td>- The organization actively collects data</td>
</tr>
<tr>
<td>- Be able to discover, read, explore data</td>
<td>- There are data management processes</td>
</tr>
<tr>
<td>Set</td>
<td>- There is a capacity to respond to data</td>
</tr>
<tr>
<td>- Can follow data processes and procedures</td>
<td></td>
</tr>
<tr>
<td>Guided Response</td>
<td></td>
</tr>
<tr>
<td>- Can follow instructions and respond to data</td>
<td></td>
</tr>
<tr>
<td>Mechanism</td>
<td></td>
</tr>
<tr>
<td>- Knows about and can use data tools and systems</td>
<td>- Data management tools and systems are supported</td>
</tr>
<tr>
<td>Complex Overt Response</td>
<td></td>
</tr>
<tr>
<td>- Can make decisions using data</td>
<td>- Decisions are driven by data</td>
</tr>
<tr>
<td>Adaptation</td>
<td></td>
</tr>
<tr>
<td>- Can create data visualizations, stories</td>
<td>- Visualizations and data stories are used</td>
</tr>
<tr>
<td>Origination</td>
<td></td>
</tr>
<tr>
<td>- Can create and share data from new sources</td>
<td>- The organization regularly collects and shares data</td>
</tr>
</tbody>
</table>

Figure 21 - Bloom's Taxonomy for the Skills Domain Adapted to Individual and Organizational Competencies
Attitudes

<table>
<thead>
<tr>
<th>Individual</th>
<th>Organizational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receiving</td>
<td>Data is welcomed and sought after</td>
</tr>
<tr>
<td>- Is open to learning from data</td>
<td></td>
</tr>
<tr>
<td>Recognizing</td>
<td>Data is considered and analyzed; there are data-based alerts</td>
</tr>
<tr>
<td>- Can detect patterns and regularities in data</td>
<td></td>
</tr>
<tr>
<td>Responding</td>
<td>Data drives actions and responses to challenges</td>
</tr>
<tr>
<td>- Is willing to act on new data</td>
<td></td>
</tr>
<tr>
<td>Framing</td>
<td>Knowledge management is data centered</td>
</tr>
<tr>
<td>- Is willing to work in a data-centered way</td>
<td></td>
</tr>
<tr>
<td>Valuing</td>
<td>Data is valued in the organization and quality controls apply</td>
</tr>
<tr>
<td>- Values and can assign value to different types of data</td>
<td></td>
</tr>
<tr>
<td>Organizing</td>
<td>Key strategies are oriented by data</td>
</tr>
<tr>
<td>- Actively orients data to address challenges</td>
<td></td>
</tr>
<tr>
<td>Characterizing</td>
<td>Organizational frameworks, structures, procedures driven by data</td>
</tr>
<tr>
<td>- Develops abstractions, generalizations and principles</td>
<td></td>
</tr>
</tbody>
</table>

Figure 22 - Bloom's Taxonomy for the Attitudes Domain Adapted to Individual and Organizational Competencies

Considerations

It was noted in the first section that the Databilities list of competencies does not include, among others, data ethics. It should be observed that the model just described, produced employing a theory-based approach, also does not include data ethics. It may be that Bloom’s is an inappropriate taxonomy to employ for this purpose, it may be that the specific list of competencies is not fully described (perhaps, for example, ‘ethics’ should be added as an ‘attitude’), or it may be that data ethics should not properly be considered a data literacy competency.

What such considerations make clear is that any theory-based conceptualization of data literacy is employed, it should be mapped against existing discussions of data literacy, including the studies cited above, and validated through research and discussion with those responsible for managing and enhancing data literacy capabilities.

Levels

Many data literacy assessment models report their results in terms of ‘levels’, where the level indicates a degree of proficiency.

For example, Means, et al. (2011) categorize teachers’ ability to use data to inform instruction as ‘below basic’, ‘basic’, ‘proficient’ and ‘advanced’. This test measured, for example, whether teachers could find relevant data in a complex table or graph (basic) or manipulating data from a complex table or graph to support reasoning (advanced).

The NU Data project, “a professional development intervention aimed at preparing special education teams to use data-based decision making to improve academic outcomes for students with disabilities” (Doll, et al., 2014) finds a “data knowledge scale”, a “a single factor measure of data literacy” (Sikorski, 2016).
QuantHub, which measures data literacy for commercial clients, offers a scale of seven ‘personas’, “each of which represents progressively more sophisticated skill levels up to ‘data scientist’” (DuBois, 2022). DataLiteracy (2021), which “works hand-in-hand with organizations who seek to improve team-based data literacy”, offers a five-level “maturity” rating. Many more examples of data literacy ‘levels’ can be identified in the literature. As in the case of other measures, there is no standard or consistent approach defining how these levels are determined nor even what they mean.

Role-Defined Data Literacy

It is arguable that a single-factor measure of data literacy is insufficient to account for the variability in both the set of data literacy competencies and also the varying degree to which each competency is required in different job functions or roles. Accordingly, a role-defined data literacy model is proposed here.

![Figure 24 - Defining a Skills Profile](image)

This figure illustrates the calculation of a role-defined data literacy profile. It consists of a combination of the set of competencies as defined in the data literacy model with the actual job or function description. This allows for a definition of the relative importance of each competency for that function, demonstrated here in the form of a radar chart (also known as a spider chart).

As discussed above, the precise definition of data literacy competencies ought to be undertaken in consultation with relevant personnel. Job or function descriptions may be obtained from extant text (the example in the diagram is from the forces.ca Careers page) or drafted as text by managers and those occupying the position. The competency profile may be created by a simply counting of the frequency of relevant terms, or by a more nuanced analysis, perhaps using machine learning.

The same process may be used to create *actual* competency profiles for each individual evaluated, by employing test results or actual communications generated by the person in question (such a process would be subject to ethical and privacy considerations). A similar process may be used to generate organizational level competency profiles.

Assessment Methods

Four major forms of assessment were identified in the literature:

- Self-Report
- Skills Test (Open Response)
- Skills Test (Multiple Choice)
• Analysis

Self-Report

In a self-report assessment, the user is presented with a series of questions about their capabilities to which they respond (presumably) honestly. While used in some cases for individual assessments, such forms of assessment are useful for assessments of organizational capabilities since there is typically no direct or objective means of testing.

The website ‘DataLiteracy’, for example, offers a “17 Key Traits of Data Literacy Self-Assessment” evaluation where for each train respondents use a sliding scale tool to indicate their proficiency and the relative importance of the trait (Jones, 2019). Similarly, a Udemy course offers self-assessment based “Data Literacy Assessment for Every Employee” (Jones, 2021). The Canada School of Public Service offered a very similar “How Data Literate Are You” quiz for federal employees (illustrated below).

There is good reason to be sceptical of self-reported cognitive capabilities, even when respondents are being honest. Subjective assessment may bias responses for a variety of reasons, including a desire to provide the right answer, or as a result of imposter syndrome. But even where no bias is present, “convincing evidence of the association between self-report scales and actual cognitive performance has not been demonstrated” (Williams, et al., 2017).

In research in 2020, NRC and DRDC researchers employed the Databilities data literacy assessment, which employs a self-report method. Aware of this concern, two additional sets of questions were included in the study, a set of ‘objective’ questions to measure the respondents’ actual capabilities (at least in statistical reasoning) and a set of questions intended to measure whether respondents had a bias toward pleasing others. Analysis found a correlation between objective test scores and self-reports. However, such analysis must be conducted with caution to avoid an autocorrelation effect (Fix, 2022).
Skills Test (Open Response)

In an open-response skills test the respondent is asked a question and provided a space in which to provide a response. Typically, there is a correct answer, or minimally, a possibility that some answers may be better than others. Assessment of the response may be based on the factual content expressed in the response (i.e., the answer) or on criteria related to the formulation of the response (e.g., use of evidence or proper argumentation).

For example, students taking the Ontario Secondary School Literacy Test (OSSLT) (EQAO, 2020) might be given a passage to read and asked, “Explain why Montreal’s approach to graffiti is beneficial. Use specific details from the selection to support your answer.” This question would require a specific response (why it’s beneficial) produced in a specific way (using details from the text) (St. Mary’s, 2018). Or the question may require a more complex construction, as in the example illustrated below:

Evaluation criteria for such a question would include completeness (answering all the ‘w’ questions), comprehensiveness (addressing both image and text) and focus (toward a newspaper audience).

An advantage of open-response assessments is that they more closely emulate real-world contexts. For example, being a data-literate teacher means being able to draw open-ended conclusions from a set of data (Athanases, et al. 2013). The same holds for other professions, including military professions, where there may be no fixed, specific, or ‘right’ answer to questions, only better or worse ways of working with the data.

Assessment of open-response tests therefore requires a set of evaluation criteria or rubric. While accepting that “there is not a clear consensus of what it means to be ‘data literate’,” Sickler, et al. (2021) propose a scoring rubric for the measurement of data literacy skills in undergraduate education. The rubric is based on “data skill indicators,” which on examination are analogous to the data literacy competencies identified in the first section of this report.

A major weakness of open-response assessment is the need for individual and interpretive grading, which requires significant human resources and time,
Skills Test (Multiple Choice)

The intent of multiple-choice tests is to obtain the same quality of assessment as with open-response assessments, but with less effort required on the part of both respondents and graders. Automated grading of multiple-choice tests is well-established and is frequently employed in online courses and web-based resources.

While they may be easier to grade, multiple-choice tests are difficult to design. It is important that the responses measure the skills being tested, and not unassociated skills (for example, incidental subject knowledge, or the ability to decipher double negatives). The choices offered need to be plausible, but distinct and easily distinguished by someone with the appropriate skill. It is important to design and develop such tests using recognized methodologies, such as Rasch modeling, which “assumes that the underlying construct that is being measured varies along a single dimension” (Bond & Fox, 2012).

Most data literacy assessments are offered in the form of multiple-choice tests. The eLearning Curve (2022) assessment referenced above is one. Another commercial example can be found by trying the Questionmark Data Literacy test by Cambridge Assessment (2021). Most of the Ontario Secondary School Literacy Test (OSSLT) is in the form of multiple-choice questions, as is the Ontario School data literacy assessment used as ‘objective questions’ in the previously mentioned NRC-DRDC research project.

Analysis

“Content analysis is a method designed to identify and interpret meaning in recorded forms of communication by isolating small pieces of the data that represent salient concepts and then applying or creating a framework to organize the pieces in a way that can be used to describe or explain a phenomenon.” (Kolbe & Burnett, 1991)

Content analysis is more often used in the context of research rather than testing and assessment, but as machine learning analysis becomes more prominent, we may expect it to be used more frequently to access data literacy. In an analysis a body of typically unrelated content is subject to labeling and categorization by researchers to identify semantic, communicative, or cognitive elements. That said, the practice of content analysis as an educational research and assessment tool is well understood in the community (Kleinheksel, et al., 2020).

An illustration of this methodology may be found in the qualitative analysis of chat transcripts to identity peer interaction in text chat (Golonka, et al., 2017). Analysis requires a taxonomy of the entities being identifies, as for example provided by a concept map. In the case of data literacy, this set of concepts is analogous to the data literacy competencies described above, and an analysis would contain two parts for each: the name or type of competency being attempted, and the degree to which it was successful.
Some examples of analysis to identify data literacy are extant. Suryadi, et al. (2020) study data literacy in physics students (and based on the analysis find it deficient). Noting that “the meaning of data literacy varies depending on who uses it, and its concept is often conveyed in terms other than data literacy,” Yousef, et al. (2021) use text analysis to identify data literacy communities. Piro and Hutcheson (2014) analyze “changes in perceptions of comfort toward data-literacy behaviors before and after an instructional intervention called a Data Chat.”

Validity and Reliability

As mentioned in passing above, it can be a challenge to ensure that assessments accurately measure the data literacy skills and competencies they are intended to assess. Hence there should be a process to ensure the assessments are valid and reliable.

As is often the case, indices from other disciplines can be useful here. For example, Cohen’s kappa index goes beyond assessor agreement to take into account for the possibility that they actually guess on at least some variables (McHugh, 2012). While used in medicine, it has been used for example by Ebbeler, et al. (2016) to calculate the inter-rater agreement in data literacy assessments.

A similar measure is Cronbach’s alpha coefficient, which measures how closely related a set of items are as a group, used by Delmas, et al. (2007) in an assessment of statistical literacy. It is a function not only of the difference between items but also of the number of items evaluated. Other measures of reliability include Fleiss kappa, the contingency coefficient, the Pearson r and the Spearman Rho, the intra-class correlation coefficient, the concordance correlation coefficient, and Krippendorff’s alpha (McHugh, 2012).

There are several different types of validity (Linn and Millar, 2005):

- Face validity - do the assessment items appear to be appropriate?
- Content validity - does the assessment content cover what you want to assess?
- Criterion-related validity - how well does the test measure what you want it to?
- Construct validity - are you measuring what you think you’re measuring?

There is no single test for validity of data literacy assessments; it “involves amassing evidence that supports these interpretations and decisions” to produce a “validity argument”. However, in other disciplines, quantitative approaches to content validity estimations such as Lawshe’s CVR and Aiken’s V are used, which in turn are based on expert assessments (Ikhsanudin & Subal, 2018).

Teaching Framework

Developing Data Literacy

The development of data literacy in the context of this report is tantamount to the development of individual and organizational data literacy, which consist of knowledge, skills and attitudes, or their analogues, in each of the data literacy competencies, defined as described in the first section, such that the achievement of these competencies can be reliably and validly assessed and detected using the assessment methodologies described in the second section.
There is not yet an established infrastructure for data literacy development; we mostly find commercial training courses and online resources. So, in the context of data literacy development in a Canadian Forces context, two areas of consideration are important: models and designs for data literacy program development in general, and examples of extant data literacy training programs and curricula.

The development of data literacy in an organization occupies a space between two extremes. On the one hand, we may find data literacy among other types of information and communication competencies, such as digital literacy or information management programs. On the other hand, we might think of data literacy as a first step in the development of higher-level competencies such as data architect or information management.

It need not be neither. As Deloitte’s Madhura Chakrabarti argues, “Basic data literacy means that your HR professionals have skills such as understanding numbers, reading a dashboard, and knowing that correlation doesn’t imply cause and effect. It doesn’t mean that they need to know how to run a regression analysis or other advanced statistics programs” (Bersin Insights Team, 2018).

Chakrabarti and colleague Jeff Mike (2018) offer five principles for people analytics upskilling in human resources, though these principles could be applied more broadly to data literacy:

- Adopt a performance mindset
- Start using available resources
- Make analytics education interesting and easily accessible
- Don’t lose focus on the core analytics team
- Ensure learning encompasses real business challenges

In other words, it is important to think of data literacy not such as knowledge or content to be used, but rather, as a part of other processes and strategies employed to achieve real objectives or outcomes.

Models and designs for data literacy program development

We did not identify a national or institutional data literacy program development methodology, but some universities have conducted background research and there are numerous data literacy program development roadmaps provided by commercial consultants. The sample below is representative.

The Data Information Literacy project funded by the Institute of Museum and Library Services (IMLS) funded research project investigating data information literacy (DIL) consisting of research teams from Purdue
University, the University of Minnesota, the University of Oregon, and Cornell University, which aimed to develop and implement a DIL curriculum in conjunction with university faculty to address these needs, and which produced a book of the same title (Carlson & Johnston, 2015) and a series of case studies. They propose a four-step methodology of planning, development, implementation, and assessment.

For example, QuantHub provides a methodology for developing individual and team data literacy learning and development plans. There are two major components: a series of ‘foundational steps’ to develop a data literacy vision and roadmap; and an iterative process of assessment, planning, learning and practice (Cowell, 2021).

Dave Wells of Eckerson Group offers a comprehensive data literacy program development methodology (2021). It is in overall structure very similar to QuantHub, in that there is a foundational planning stage and then an iterative process of assessment, planning, execution and measurement. It should be noted that this approach resembles training program methodology generally, and that adaptations specific to data literacy were not needed in the overall framework.

What is key in the Eckerson methodology is that it is recognized that both individual and organizational data literacy competencies and capabilities need to be assessed and planned for. Organizational data literacy is not merely a sum of individual data literacies but requires in addition factors such as tools and systems, incentives and motivators.

Gartner, by contrast, offers a report describing a three-phase methodology for the development of an institutional program (Panetta, 2021) consisting of assessment, data literacy training, and then evaluation of the outcome. While the full program evaluation is an important component, it should be understood once again that organizational capabilities constitute more than just training.

Extant Data literacy training programs and curricula

After a brief surge in the mid 2010s, data literacy is enjoying a resurgence in 2022.

While no longer extant, the Data Literacy Project, founded in 2015 at Dalhousie University, proposed “a transdisciplinary examination of existing strategies and best practices for teaching data literacy, synthesizing documented explicit knowledge using a narrative-synthesis methodology and identifying areas where additional research is needed.” (DataLiteracy.ca, Internet Archive, 2021)

This is not to be confused with the Data Literacy Project, launched by Launched by Qlik and including partners Accenture, Cognizant, Experian, Pluralsight, the Chartered Institute of Marketing, and Data to the People. The project has the intention of providing resource-based learning for data literacy and eventually a data literacy certification. This project adopts a competency-based approach similar to that described in this report and makes the point that the competencies “that are relevant to each individual can vary significantly depending on how they interact with data and what part of the data process they are involved in” (Hanegan, 2022).
Conducted online between January and March 2022, the EDUCAUSE Data Literacy Institute consisted of a series of eight synchronous online meetings to discuss resources, activities, and projects in support of seven key data literacy competency areas (Kleitz & Shelly, 2022).

In the longer term, data literacy initiatives will develop in a manner similar to digital literacy initiatives launched in the previous decade. Now a mature research and development effort, we can draw on the UNESCO assessment that “Six of the national frameworks (Costa Rica, India, Kenya, Philippines, Chile and British Columbia (Canada)) that are most clearly written with regard to the competency areas, as well as the three enterprise frameworks to map against the DigComp 2.0 framework” (Antoninis, 2019).

Teaching and Learning Methods

Pedagogical methods to teach or support data literacy training

Data literacy is new enough that specific pedagogies have not been broadly developed or applied. However, in many ways, data literacy training is similar to that in other disciplines, and especially those characterized as ‘literacies’. Thus, recommendations for, say, digital, information or statistical literacy instruction may apply more broadly to data literacy in general.

The following recommendations are offered by Guidelines for Assessment and Instruction in Statistics Education (GAISE) (GAISE College Report ASA Revision Committee, 2016, Bargagliotti, et al., 2020).

<table>
<thead>
<tr>
<th>1. Teach statistical thinking.</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Teach statistics as an investigative process of problem-solving and decision-making.</td>
</tr>
<tr>
<td>• Give students experience with multivariable thinking.</td>
</tr>
<tr>
<td>2. Focus on conceptual understanding.</td>
</tr>
<tr>
<td>3. Integrate real data with a context and purpose.</td>
</tr>
<tr>
<td>4. Foster active learning.</td>
</tr>
<tr>
<td>5. Use technology to explore concepts and analyze data.</td>
</tr>
<tr>
<td>6. Use assessments to improve and evaluate student learning.</td>
</tr>
</tbody>
</table>

Specific trials of different methods in various learning contexts

In this section we survey five specific methods applied to the teaching of data literacy. This is not a comprehensive listing of all methods but serves to illustrate how to apply the principles described just above in specific teaching contexts.

Datstorming

This is a way to think about using how to create designs using data using non-digital media. “To overcome their unfamiliarity to data, we aimed to craft abstract data into hands-on design materials in the form of cards.” (Lim, et al., 2021)
Simulations and Interactive Technologies
Biehler, et al. (2016) describe pre-service teachers’ reasoning about modeling a family factory with TinkerPlots, “a data visualization and modeling tool developed for use by middle school through university students.”

Case-Based Teaching Method
Case-based teaching is “an active learning strategy in which students read and discuss complex, real-life scenarios that call on their analytical thinking skills and decision-making.” (Riddle, et al., 2017).

Utilising affordances in real-world data
Based on the Teaching for Statistical Literacy Hierarchy, this method analyzes statistical literacy lessons that use real-world data from the perspective of the affordances in the data presentation (Chick & Pierce, 2012).

Data-Driven Decision-Making
According to Abbott, et al. (2017), this team-based approach combines a number of competency requirements in a single activity: expertise in data collection, management in a variable environment, allocation of space and time for the process, and the need to ensure process fidelity. This specific activity helps teachers design child literacy instruction, but the approach can be generalized to other data-driven decision-making activities.

Individual Learning Resources
In this section we offer samples of data literacy learning resources. The four types of resources described – lesson plans, help sheets, course libraries, and performance support tools – correspond to four contexts of instruction: in the classroom, in the field, individual or self-study, and while using tools or equipment.

Lessons and Lesson Plans
The Federal Reserve Bank of St. Louis offers a set of clearly written and accessible lesson plans on data literacy. Each lesson reviews data interpretation, analysis, and/or presentation concepts in detail. The source may seem surprising at first but reflects the fact that financial services and insurance agencies have a long history of working with data. A sample lesson is provided as part of this report and may be found here: https://www.stlouisfed.org/education/-/media/project/frbstl/stlouisfed/education/lessons/pdf/fred-gdp-stacking.pdf
Help Sheets and Templates

The Data Visualization Project offers a set of common data visualization formats or templates, with an accompanying instruction page for each one. These templates assist learners consider the varying ways to represent or display a given set of data. https://datavizproject.com/

![Data Visualization Templates](image)

Figure 36 - DataViz Project

Another type of template is the data analysis worksheet created by the Van Andel Education Institute.

![Data Analysis Worksheet](image)

Figure 37 - Van Andel Education Institute, 2018

Course and Video Libraries

Kubicle offers a subscription-based data literacy and data management course library. Again, the courses are series of videos. https://kubicle.com/library

eLearning Curve (2022) offers a data literacy course library in a standard LMS-teaching format. It is part of a larger library of courses on data management, business intelligence and analytics.
Performance Support Tools

Resembling any of the learning resources described above, performance support tools are built into data management applications and help the user progress from basic literacy to advanced user.

For example, Qlik offers a range of performance support learning resources alongside its business intelligence platform. Enterprise-focused data management platforms such as IBM Cognos offer courses and programs that lead to product certification. Progress toward certification is represented through the use of badges to recognize specific skills or competencies.

References

---. “Take the 17 Key Traits of Data Literacy Self-Assessment. DataLiteracy”. 2019 https://dataliteracy.com/take-the-17-key-traits-self-assessment/

Appendices

Appendix 1 - Data Literacy Frameworks for Individuals

1. Draft Canada Data Competency Frameworks

Source: Draft Canada Data Competency Frameworks, unpublished, 2021
2. **JNCC Report No. 590, gov.uk Data Skills Framework**

 https://hub.jncc.gov.uk/assets/6ef949ed-1c22-438f-b2f7-fd4818ec4566

 1. **Requirements and business analysis** – the ability to understand and prioritise user needs; and identify how data can be efficiently integrated into processes.
 2. **Data governance** – the responsibilities associated with collection, handling, ownership, publication and ultimately removal of data.
 3. **Data management** – knowledge of data concepts, including quality control, storage, and integration with other sources.
 4. **Access and security** – understanding of: the obligations and restrictions around granting and gaining access to data; the principles of open data; different licensing models; security; and the process of risk assessments.
 5. **Data manipulation** – manipulating, processing, cleansing and combining data for further analysis or use. Automation of complex manipulation on large data volumes.
 7. **Communication and visualisation** – interpreting, summarising and communicating data and various analytical outputs for different audiences.

 Source: Statistics Canada, 2020. Data literacy competencies

Data analysis - The knowledge and skills required to ask and answer a range of questions by analyzing data including developing an analytical plan; selecting and using appropriate statistical techniques and tools; and interpreting, evaluating and comparing results with other findings.

Data awareness - The knowledge required to know what data is and what are different types of data. This includes understanding the use of data concepts and definitions.

Data cleaning - The knowledge and skills to determine if data are 'clean' and use the best method and tools to take necessary actions to resolve any problems to ensure data are in a suitable form for analysis.

Data discovery - The knowledge and skills to search, identify, locate and access data from a range of sources related to the needs of an organization.

Data ethics - The knowledge that allows a person to acquire, use, interpret and share data in an ethical manner including recognizing legal and ethical issues (e.g., biases, privacy).

Data exploration - The knowledge and skills required to use a range of methods and tools to learn what is in the data. The methods include: summary statistics; frequency tables; outlier detection; and visualization to explore patterns and relationships in the data.

Data gathering - The knowledge and skills to gather data in simple and more complex forms to support the gatherer's needs. This could involve the planning, development and execution of surveys or gathering data from other sources such as administrative data, satellite or social media data.

Data interpretation - The knowledge and skills required to read and understand tables, charts and graphs and identify points of interest. Interpretation of data also involves synthesizing information from related sources.

Data management and organization - The knowledge and skills required to navigate internal and external systems to locate, access, organize, protect and store data related to the organization's needs.

Data modeling - The knowledge and skills required to apply advanced statistical and analytic techniques and tools (e.g. regression, machine learning, data mining) to perform data exploration and build accurate, valid and efficient modelling solutions that can be used to find relationships between data and make predictions about data.

Data stewardship - Knowledge and skills required to effectively manage data assets. This includes the oversight of data to ensure fitness for use, the accessibility of the data, and compliance with polices, directives and regulations.

Data tools - The knowledge and skills required to use appropriate software, tools, and processes to gather, organize, analyze, visualize and manage data.

Data visualization - The knowledge and skills required to create meaningful tables, charts and graphics to visually present data. This also includes evaluating the effectiveness of the visual representation (i.e., using the right chart) while ensuring accuracy to avoid misrepresentation.

Evaluating data quality - The knowledge and skills required to critically assess data sources to ensure they meet the needs of an organization. This includes identifying errors or problems and taking action to correct them. This also includes awareness of organizational policies, procedures and standards to ensure good quality data.

Evaluating decisions based on data - The knowledge and skills required to evaluate a range of data sources and evidence in order to make decisions and take actions. This can include monitoring and evaluating the effectiveness of policies and programs.
Evidence based decision-making - The knowledge and skills required to use data to help in the decision-making and policy making process. This includes thinking critically when working with data; formulating appropriate business questions; identifying appropriate datasets; deciding on measurement priorities; prioritizing information garnered from data; converting data into actionable information; and weighing the merit and impact of possible solutions and decisions.

Metadata creation and use - The knowledge and skills required to extract and create meaningful documentation that will enable the correct usage and interpretation of the data. This includes the documentation of metadata which is the underlying definitions and descriptions about the data.

Storytelling - The knowledge and skills required to describe key points of interest in statistical information (i.e., data that has been analyzed). This includes identifying the desired outcome of the presentation; identifying the audience's needs and level of familiarity with the subject; establishing the context; and selecting effective visualizations.

4. 2021 Data Maturity Model

5. UNESCO Institute for Statistics

6. Open Data Institute Data Skills Framework

7. Duncan, et al., Data Literacy Capabilities and Competencies
8. Gartner Data Literacy Toolkit

9. Apolitical Data Literacy Boot Camp

https://apolitical.co/events/data-literacy-an-online-boot-camp-with-statistics-canada
10. Learn2Analyze Educational Data Literacy Competence Profile

11. Dalhousie University Data Literacy Education

12. Critical Data Literacy

https://pressbooks.library.ryerson.ca/criticaldataliteracy/
13. Databilities
Source: Data to the People. 2019. Databilities [https://www.datatothepeople.org/databilities See also: https://www.datatothepeople.org/_files/ugd/1ff4ae_3e3b4a50ead44939b50713c3c9af4b66.pdf]. Also referenced in: Bonikowska, Sanmartin, and Frenette, Statistics Canada 2019

<table>
<thead>
<tr>
<th>PPDC</th>
<th>Competence</th>
<th>Foundational competence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inquiry process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plan, implement and monitor courses of action [14]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Undertake data inquiry process [34]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foundational knowledge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Understand the ethics of using data [34]</td>
<td>Ethics</td>
</tr>
<tr>
<td></td>
<td>Use data to solve (real) problems [29] [2] [34] [14] [7]</td>
<td>Real-world problem-solving context</td>
</tr>
<tr>
<td></td>
<td>Understand the role and impact of data in society in different contexts [7]</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Identify problems or questions that can be solved with data [14] [7]</td>
<td>Ask questions from data</td>
</tr>
<tr>
<td>P</td>
<td>Develop hypotheses [14] Identify data [14]</td>
<td>Develop hypotheses and identify potential sources of data</td>
</tr>
<tr>
<td>D</td>
<td>Collect or acquire data [6] [34] [21] [14] [7] Critique data [21]/[7]</td>
<td>Collect or acquire data</td>
</tr>
</tbody>
</table>
15. Maturity Model for Data Literacy

16. Grillenberger & Romeike, 2018

Figure 3. Results of the DLMM self-evaluation
Table 1: Matrix of exemplary competencies for the different combinations of process (P1–P4) and content areas (C1–C6).

<table>
<thead>
<tr>
<th>C1</th>
<th>P1 gathering, modeling and cleansing</th>
<th>P2 implementing and optimizing</th>
<th>P3 analyzing, visualizing and interpreting</th>
<th>P4 charting, archiving and creating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- choose suitable source for gathering the desired information in data</td>
<td>- implement algorithms for gathering the desired data</td>
<td>- combine data to gain new information</td>
<td>- decide whether to share original data</td>
</tr>
<tr>
<td></td>
<td>- structure the gathered data in a suitable way for later analysis</td>
<td>- implement simple algorithms to download data from web APIs</td>
<td>- explain the desired information in visualizations</td>
<td>- decide which of the original data to store to keep the required information</td>
</tr>
<tr>
<td></td>
<td>- evaluate if the captured data represents the original information correctly</td>
<td>- discuss optimizations and limits of data gathering</td>
<td>- interpret data and analysis results to get new information</td>
<td>- decide on an appropriate way to delete specific data</td>
</tr>
<tr>
<td>C2</td>
<td>- select a suitable data model</td>
<td>- decide on a suitable data storage and store the data</td>
<td>- access the data in a suitable way for analysis</td>
<td>- decide whom to give access to the stored data</td>
</tr>
<tr>
<td></td>
<td>- structure the gathered data in a suitable way</td>
<td>- use possibilities for creating efficient access to data</td>
<td>- use suitable data formats for the data to analyze</td>
<td>- determine access rights for the data</td>
</tr>
<tr>
<td></td>
<td>- visualize data models in a suitable way</td>
<td>- increase storage efficiency using compression</td>
<td>- show their analysis results appropriately</td>
<td>- discuss issues related to data validity when using data</td>
</tr>
<tr>
<td></td>
<td>- decide whether specific data influences results of analysis</td>
<td>- implement simple analysis algorithms</td>
<td>- decide for appropriate analysis methods</td>
<td>- decide which analysis results to share with whom</td>
</tr>
<tr>
<td></td>
<td>- structure data appropriately for analysis</td>
<td>- determine adjustment across for analysis</td>
<td>- visualize data and analysis results</td>
<td>- reason whether storing the original data is necessary after analyzing them</td>
</tr>
<tr>
<td></td>
<td>- correct data from different sources for analysis purposes</td>
<td>- optimize data analyses in order to gain higher quality results</td>
<td>- interpret the results of analyses</td>
<td>- decide whether it is reasonable to share information about the analysis process</td>
</tr>
<tr>
<td>C3</td>
<td>- reflect ethical issues when gathering information</td>
<td>- discuss how to anonymize or pseudonymize data appropriately</td>
<td>- discuss the ethical impacts of the conducted data analyses and their results</td>
<td>- reason whether storing data for further uses should be allowed from an ethical perspective</td>
</tr>
<tr>
<td></td>
<td>- decide whether combining different data sources is reasonable in specific contexts</td>
<td>- exclude data from permanent storage based on ethical considerations</td>
<td>- decide whether analysis results are sufficiently anonymized</td>
<td>- decide on appropriate ways to accurately reuse original data and analysis results</td>
</tr>
<tr>
<td></td>
<td>- discuss impacts on privacy when continuously capturing data</td>
<td>- choose access rights to data based on privacy issues</td>
<td>- reflect whether analyzing specific data raises privacy issues</td>
<td>- find ways for appropriately removing attributes that lead to privacy issues</td>
</tr>
</tbody>
</table>

17. Conceptual Framework for Data Literacy for Teachers (DLFT)

18. APS Data Capability Framework

19. Data Literacy Body of Knowledge (DLBOK)
20. DataLiteracy 17 Key Traits of Data Literacy
https://dataliteracy.com/take-the-17-key-traits-self-assessment/

Appendix 2 - Corporate Data Literacy Frameworks

1. TDWI Data Literacy Maturity Model Assessment Guide
TDWI. https://tdwi.org/-/media/D98D941F36214D0FA9501FCF3B5F3A79.pdf
2. The Data Literacy Index
Source: The Data Literacy Project. (2018). The Data Literacy Index.
https://thedataliteracyproject.org/files/download/downloads/Qlik%20-%20The_Data_Literacy_Index_October%202018.pdf

3. Data Quality Campaign
Appendix 3 – Data Literacy Models

Data Stewardship Model

This model describes approaches to data literacy that emphasize data acquisition, curation, quality and deployment. A prototypical example of this approach is the Statistics Canada descriptions of data quality and the data journey.

Statistics Canada, 2020-09-23: “Data literacy also means having the knowledge and skills to be a good data steward including the ability to assess the quality of data, protect and secure data, and their responsible and ethical use.”

Statistics Canada, 2020-09-23a: Data Quality in Six Dimensions: Relevance; Accuracy; Timeliness; Interpretability; Coherence; Accessibility

Statistics Canada 2020-09-30: Steps of the data journey… The data journey is supported by a foundation of stewardship, metadata, standards and quality.

Panetta (Gartner), 2019 Digital Dexterity: “Further, data literacy is an underlying component of digital dexterity, which is an employee’s ability and desire to use existing and emerging technology to drive better business outcomes, another important skill for digital business.”

Bonikowska, et al. 2019,: “Data literacy also means having the knowledge and skills to be a good data steward including the ability to assess the quality of data, protect and secure data, and their responsible and ethical use.”

Bryla (2018): “With data everywhere, it will become the means of communication between IT and business, between the citizen data scientists and the domain experts… Understanding of where the data came from, how it was collected, and how it was analyzed and visualized are all essential elements of data literacy.”

Qlik, 2018 - Corporate Data Literacy: “We established the first definition for Corporate Data Literacy as the ability of an organization to read, analyze, utilize for decisions, argue with and communicate data throughout the organization…. The Data Literacy Index, commissioned by Qlik and produced by Wharton School academics and IHS Markit, reveals correlation between company performance and workforce data literacy.”
Sperry 2018: data literacy is the “ability to derive meaningful information from data”. (Cited in Bonikowska, et al.; caution - this cannot be found by Google Search)

Wolff et al., 2016: “Current definitions of data literacy are not fit for purpose - they don’t account for changes in the nature of data sets, which are becoming larger and more complex. Nor do they account for the different roles in which people must apply data literacy skills.” p. 10 “These include the abilities to select, clean, analyse, visualise, critique and interpret data, as well as to communicate stories from data and to use data as part of a design process.” (p. 23) Cited in Bonikowska, et al. 2019.

Deahl, 2014: “The concept of information literacy has been criticized for its focus on building technical skills that are easy to acquire but quickly become obsolete. Discussions of media literacy, on the other hand, deemphasize skill acquisition and focus instead on ways of supporting media production and a deeper critical understanding of media focused on modes of representation, language, production, and audience.”

Mandinach & Gummer (2013): Data literacy is “The ability to understand and use data effectively to inform decisions. It is composed of a specific skill set and knowledge base that enables educators to transform data into information and ultimately into actionable knowledge. These skills include knowing how to identify, collect, organise, analyse, summarise and prioritise data. They also include how to develop hypotheses, identify problems, interpret the data, and determine, plan, implement, and monitor courses of action.” Cited by Wolff et. al. 2016.

Vahey et al. 2006: “data literacy includes the ability to formulate and answer questions using data as part of evidence-based thinking; use appropriate data, tools, and representations to support this thinking; interpret information from data; develop and evaluate data-based inferences and explanations; and use data to solve real problems and communicate their solutions.” Cited by Wolff et. al. 2016.

Information Literacy Model

Drawing from information literacy coursework, researchers “have used the ACRL’s (2000) information literacy standards and initial research findings to suggest lists of competencies for data literacy… the various models are comprised of skills related to accessing, managing, communicating, preserving and ethically using data for both undergraduate and graduate education. ” Maybee & Zilinski (2016).

Hunt (2004): data literacy education should borrow heavily from information literacy education, even if the domain of data literacy is more fragmented than the field of information literacy.” (Koltay, 2016). As Maybee & Zilinski (2016) write, ”The emerging construct of data literacy has typically been closely related to information literacy.”

Framework for Information Literacy for Higher Education (ACRL, 2015) - see http://www.ala.org/acrl/standards/ilframework

Maybee & Zilinski (2016): “challenges have been made concerning the efficacy of generic approaches to information literacy, such as the standards, for enabling people to use information in the various contexts in which they live and work (e.g., Bruce, 1997; Lloyd, 2010).”
Elements of generic data literacy models (Maybee & Zilinski, 2016)

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Awareness</td>
</tr>
<tr>
<td>Access</td>
</tr>
<tr>
<td>Engage</td>
</tr>
<tr>
<td>Manage</td>
</tr>
<tr>
<td>Communicate</td>
</tr>
<tr>
<td>Ethical use</td>
</tr>
<tr>
<td>Preserve</td>
</tr>
</tbody>
</table>

Pothier & Condon, 2020: Seven Data Competencies

Carretero, Vuorikari & Punie, 2017: European Digital Competencies Framework: Information and data literacy; Browsing, searching, filtering data, information and digital content; Evaluating data, information and digital content; Managing data, information and digital content.

Maybee & Zilinski, 2016: Data Informed Learning: proposed Elements of generic data literacy models (see above); “we advance data informed learning as a new framework for data literacy for use in higher education.”

Carlson and StowellBracke, 2015: A pilot data literacy program on data literacy offered at Purdue University was built around information literacy skills.

Calzada Prado and Marzal, 2015: data literacy as a form of information literacy. Precedent concepts:

- quantitative literacy (“using simple mathematical concepts to solve everyday problems” (Steele and Kiliç-Bahi 2008, 1))
- statistical literacy (“the ability to understand and critically evaluate statistical results that permeate our daily lives - coupled with the ability to appreciate the contribution that statistical thinking can make in public and private, professional and personal decisions” (Wallman 1993, 1))

Data Literacy: “their similarities may lead to regarding data literacy as a complement to or a form of information literacy, as respectively suggested by Stephenson and Caravello (2007) and Otto (2012), which makes us think that data literacy would be the umbrella concept covering statistical literacy, rather than the vice versa.” (p. 125)

Carlson & Johnston (eds) 2015: Data Information Literacy (Purdue). “Information literacy implies the ability to find, manage, and use information in any format, and editors Carlson and Johnston apply it to the format of raw
data. They coined the term data information literacy as an application of information literacy in the context of research."

Alton Grizzle and Maria Carme Torras Calvo, eds. 2013: Media information literacy. "MIL (Media information literacy), understood as a composite concept, encompasses knowledge, skills and attitudes that enable citizens to understand the role and functions of media and other information providers in democratic societies."

Calzada Prado & Marzal, 2013: Data literacy as component of information literacy "identified a number of abilities, some of which clearly show their origin in the best-known definition of information literacy (ALA, 1989) and the Information Literacy Competency Standards for Higher Education (ACRL, 2000). They also emphasize the ability to identify the context in which data is produced and reused. By mentioning these two main components of the data lifecycle they are in line with contemporary views of information literacy that incorporate the understanding of how information is produced (ACRL,2013)." "Data literacy can be defined, then, as the component of information literacy that enables individuals to access, interpret, critically assess, manage, handle and ethically use data." (p. 126)

Statistical Literacy

Schield, 2004: "data literacy is the part of statistical literacy that involves training individuals to access, assess, manipulate, summarize and present data, whereas statistical literacy (also) aims to teach how to think critically about descriptive statistics." (cited by Calzada Prado & Marzal (2013), p. 125)

Bundy, 2004: "The Australian and New Zealand Information Literacy Framework, edited by Alan Bundy (2004) states that information literate persons obtain, store and disseminate not only text, but data as well." (Koltay, 2016)

Australia Bureau of Statistics, 2010: statistical literacy standards. "Statistical literacy is essentially the ability to find, access, utilise, understand and communicate the story contained within the data. Sound understanding, interpretation and critical evaluation of statistical information can then contribute to decision making. The importance of statistical literacy in our information-rich society means that it has now become a core competency like reading and writing."

Science and Research Data Literacy

This model of data literacy emphasizes aspects of data related to computer science, mathematics and statistics. Though based on principles of data stewardship, it defines a set of data skills including data awareness, forms of statistical representation, the ability to analyze, interpret and evaluate statistical information, and communication of statistical information (Australian Bureau of Statistics, 2010). Koltay (2016) writes that related concepts include research data services, data governance (he notes, "valid data governance may require identifying 'people who informally already have a level of accountability for the data they define, produce and use to complete their jobs or functions'" p. 305).

Maybee & Zilinski (2016) write, "challenges have been made concerning the efficacy of generic approaches to information literacy, such as the standards, for enabling people to use information in the various contexts in which they live and work (e.g., Bruce, 1997; Lloyd, 2010)." These objections have led to more context-specific models of data literacy development, and in particular to (Bruce, 2008) "data informed learning as an approach to data literacy that shifts the focus from acquiring generic data-related skills to students learning how to use data in disciplinary contexts."
Chantel Ridsdale, et al., 2015: matrix of data literacy competencies: "Data literacy is the ability to collect, manage, evaluate, and apply data, in a critical manner." p.2 “Ridsdale et al. (2015) set up a matrix of data literacy competencies with the intention to foster an ongoing conversation about standards of data literacy and learning outcomes in data literacy education.” (Koltay, 2016)

Koltay, 2016: research data services and data governance: "Data literacy is closely related to research data services that include research data management (RDM)." p. 303 Related concepts: research data services, data governance ("valid data governance may require identifying "people who informally already have a level of accountability for the data they define, produce and use to complete their jobs or functions"” p. 305)

Koltay, 2015a: transform data into information: "data literacy can be defined as a specific skill set and knowledgebase, which empowers individuals to transform data into information and into actionable knowledge by enabling them to access, interpret, critically assess, manage and ethically use data (Koltay, 2015a)." (need to verify: Koltay T (2015a) Data literacy: In search of a name and identity. Journal of Documentation 71 (2): 401-415.)

Searle et al., 2015: “identify data literacy as one of RDSs activities that support researchers in building the skills and knowledge required to manage data well. Therefore, we can say that data literacy is related to practically all processes that are covered by RDSs, and build the main framework of libraries’ involvement in supporting the data-intensive paradigm of research (Tenopir et al., 2014). RDSs are undoubtedly comprehensive, thus covering their aspects makes data literacy overarching and comprehensive.” (Koltay, 2016)

Johnson, 2012: “While the various definitions of data literacy will be discussed below, we define it here as the ability to process, sort and filter vast quantities of information, which requires knowing how to search, how to filter and process, to produce and synthesize it (Johnson, 2012).”

Social Engagement Model
This may be a nascent model. Thus far, it is only really articulated in a single source (Rahul Bhargava, et. al., 2015), though it has its origins in a broader definition of literacy, as exemplified by Robinson (2005), who talks of literacy as enabling individuals to achieve their goals, to develop their knowledge and potential, and to participate fully in their community and wider society” (p. 13). It distinguishes between the need for everyday uses of data from the deeper requirements of data science.

Rahul Bhargava, et. al. 2015: engage in society through and about data: “We define data literacy as “the desire and ability to constructively engage in society through and about data.”

Robinson, 2005: "Literacy is the ability to identify, understand, interpret, create, communicate and compute, using printed and written materials associated with varying contexts. Literacy involves a continuum of learning in enabling individuals to achieve their goals, to develop their knowledge and potential, and to participate fully in their community and wider society.” (p. 13)

Appendix 4 – Data Literacy Competencies
Data literacy competencies are the knowledge and skills you need to effectively work with data. The list of competencies was extracted from the literature surveyed in this report. The number represents the number of times (out of 20) the competency was listed. Please note that references in this section are listed in Appendix 1.
Change Management

Existing definitions may become inadequate over time as the types of data available change to become bigger and more complex (Wolff et al. 2016), and emerging technologies such as artificial intelligence change how we think of and use data (Statistics Canada, 2020).

Some types of data – master data and reference data – should have tightly controlled sets of valid values. These values appear in thousands and millions of transactions; without change control, different repositories storing master and reference data get out of sync (Data Governance Institute, 2020).

Open Data Institute, 2020; Duncan, et al., 2021; Gartner, 2019; Wells, 2022; Data Governance Institute, 2022;

Knowledge of widely-accepted data citation methods, creates correct citations for secondary data sets (Ridsdale, et al., 2015).

Although you are likely creating your own, original data visualizations, they are based on external data sources. Any reader who is looking at your data visualization should be able to find its original source. Don’t forget to cite your data source that you used to create your visualization. Review some tips on citing data from the Ryerson University library (Mulvaney, et al., 2022)

Ridsdate, et al., 2015; Mulvaney, et al., 2022; Grillenberger & Romeike, 2018; Australian Public Service Commission, 2021;

Conceptually, data literacy requires critical thinking, gaining knowledge from abstraction, and application of results. This critical, and often abstract reasoning is similar to computational thinking. Computational thinking involves “defining abstractions, working with multiple layers of abstraction and understanding the relationships among the different layers” (Ridsdale, et al., 2015).

Ridsdate, et al., 2015; Grillenberger & Romeike, 2018; Bowne-Anderson & Loukides, 2022;

The knowledge and skills required to ask and answer a range of questions by analyzing data including developing an analytical plan; selecting and using appropriate statistical techniques and tools; and interpreting, evaluating and comparing results with other findings. (Statistics Canada, 2020). Eg. predictive and prescriptive analytics.

Statistics Canada, 2021; Heeley & Wilkinson, 2018; Statistics Canada, 2020; Open Data Institute, 2020; Duncan, et al., 2021; Gartner, 2019; Apolitical, 2021; Learn2Analyze, 2017; Ridsdate, et al., 2015; Databilities, 2020; Wolff, et al., 2016; Sternkopf & Mueller, 2018; Grillenberger & Romeike, 2018; Gummer & Mandinach, 2015; Australian Public Service Commission, 2021; Wells, 2022; Van Andel Education Institute;

The knowledge required to know what data is and what are different types of data. This includes understanding the use of data concepts and definitions (Statistics Canada, 2020).

Statistics Canada, 2021; Statistics Canada, 2020; Ridsdate, et al., 2015; Wolff, et al., 2016; Gummer & Mandinach, 2015; Wells, 2022;
Data Cleaning
The knowledge and skills to determine if data are 'clean' and use the best method and tools to take necessary actions to resolve any problems to ensure data are in a suitable form for analysis (Statistics Canada, 2020).

Statistics Canada, 2020; Open Data Institute, 2020; Apolitical, 2021; Learn2Analyze, 2017;

Data Communities
Data communities - networks of engaged data users within an organization - represent a way for businesses to create conditions where people can immerse themselves in the language of data, encouraging data literacy and fueling excitement around data and analytics... to generate data insights that are truly valuable, people need to become fluent in data—to understand the data they see and participate in conversations where data is the lingua franca. Just as a professional who takes a job abroad needs to immerse herself in the native tongue, businesses who value data literacy need ways to immerse their people in the language of data (Compton, 2020).

Open Data Institute, 2020; Jason Compton, Forbes, 2020;

Data Conversion and Interoperability
Data processing methodology: understanding and/or applying statistical procedures used to deal with intermediate data and statistical outputs, e.g., weighting schemes, statistical adjustment, or methods for imputing missing values or source data (APS, 2021)

Knowledge of different data types and conversion methods, converts data from one format or file type to another (Ridsdale, et al., 2015)

Australian Public Service Commission, 2021; Ridsdate, et al., 2015; Databilities, 2020; Sternkopf & Mueller, 2018; Gummer & Mandinach, 2015; Australian Public Service Commission, 2021; Wells, 2022;

Data Curation
Ensure that data is reliably retrievable for future reuse, and to determine what data is worth saving and for how long) (Learn2Analyze, 2017).

You need to find data that is well-matched with analysis goals. Data seeking is not practical without first stating the goals and understanding the business, information, and data requirements. With known requirements, you can search for data. The datasets that you find should be evaluated for quality and trustworthiness, and sometimes to select the best fit among multiple datasets that are available (Wells, 2022).

Learn2Analyze, 2017; Ridsdate, et al., 2015; Wells, 2022; Koltay, 2022;

Data Description or Metadata
Metadata management: The discipline of managing information that describes various facets of a data asset to improve its usability. Shorthand: "Data about data." (Gartner, 2019, Toolkit).
The knowledge and skills required to extract and create meaningful documentation that will enable the correct usage and interpretation of the data. This includes the documentation of metadata which is the underlying definitions and descriptions about the data (Statistics Canada, 2020).

Open Data Institute, 2020; Gartner, 2019; Apolitical, 2021; Learn2Analyze, 2017; Ridsdate, et al., 2015; Databilities, 2020; Gummer & Mandinach, 2015; Australian Public Service Commission, 2021; Wells, 2022; elearning Curve, 2022;

Data Discovery and Exploration

Automatically finding, visualizing and narrating important findings within datasets (such as correlations, exceptions, clusters, links and predictions) that are relevant to users without requiring them to build models or write algorithms (Gartner, 2019, Toolkit).

The knowledge and skills to search, identify, locate, and access data from a range of sources related to the needs of an organization (Statistics Canada, 2020). The methods include: summary statistics; frequency tables; outlier detection; and visualization to explore patterns and relationships in the data (Statistics Canada, 2020).

Statistics Canada, 2020; Nancy Law, David Woo, Jimmy de la Torre, Gary Wong, UNESCO Institute for Statistics, 2018; Gartner, 2019; Apolitical, 2021; Ridsdate, et al., 2015; Databilities, 2020; Wolff, et al., 2016; Sternkopf & Mueller, 2018; Grillenberger & Romeike, 2018; Gummer & Mandinach, 2015;

Data Ethics

The knowledge that allows a person to acquire, use, interpret and share data in an ethical manner including recognizing legal and ethical issues (e.g., biases, privacy) (Statistics Canada, 2020).

Be able to use the informed consent, be able to protect individuals’ data privacy, confidentiality, integrity and security, be able to apply authorship, ownership, data access (governance), re-negotiation and data-sharing (Learn2Analyze, 2017).

Australian Public Service Commission, 2021; Statistics Canada, 2020; Open Data Institute, 2020; Apolitical, 2021; Learn2Analyze, 2017; Ridsdate, et al., 2015; Wolff, et al., 2016; Sternkopf & Mueller, 2018; Grillenberger & Romeike, 2018;

Data Evaluation or Assessment

To analyse, compare and critically evaluate the credibility and reliability of sources of data, information and digital content. To analyse, interpret and critically evaluate the data, information and digital content (Law, et al., 2018).

Nancy Law, David Woo, Jimmy de la Torre, Gary Wong, UNESCO Institute for Statistics, 2018; Open Data Institute, 2020; Ridsdate, et al., 2015; Gummer & Mandinach, 2015; Wells, 2022;

Data Gathering or Data Collection

The knowledge and skills to gather data in simple and more complex forms to support the gatherer's needs. This could involve the planning, development and execution of surveys or gathering data from other sources such as administrative data, satellite or social media data (Statistics Canada, 2020).

Be able to obtain, access and gather the appropriate data and/or data sources, and be able to apply data limitations and quality measures (e.g., validity, reliability, biases in the data, difficulty in collection, accuracy, completeness)(Learn2Analyze, 2017).
Data collection, manipulation, and analysis processes: These behaviours that can be qualified mainly as motivational can be supplemented by distinct steps that are needed for data sharing. Some of them are described by Buckland (2011) (Koltay, 2015).

Statistics Canada, 2020; Korri Palmer, Safegraph, 2021; Apolitical, 2021; Learn2Analyze, 2017; Ridsdate, et al., 2015; Databilities, 2020; Wolff, et al., 2016; Grillenberger & Romeike, 2018; Australian Public Service Commission, 2021; Wells, 2022; Koltay, 2022;

Data Governance or Stewardship
Knowledge and skills required to effectively manage data assets. This includes the oversight of data to ensure fitness for use, the accessibility of the data, and compliance with policies, directives and regulations (Statistics Canada, 2020).

Australian Public Service Commission, 2021; Heeley & Wilkinson, 2018; Statistics Canada, 2020; Korri Palmer, Safegraph, 2021; Open Data Institute, 2020; Duncan, et al., 2021; Apolitical, 2021; Australian Public Service Commission, 2021; Wells, 2022; elearning Curve, 2022;

Data Interpretation
The knowledge and skills required to read and understand tables, charts and graphs and identify points of interest. Interpretation of data also involves synthesizing information from related sources (Statistics Canada, 2020).

Databilities, 2020; Wolff, et al., 2016; Sternkopf & Mueller, 2018; Ridsdate, et al., 2015; Grillenberger & Romeike, 2018; Wells, 2022;

Data Management
Consistently describing the core entities of an organization across different views/users of the same data, including: customers, prospects, citizens, suppliers, sites, hierarchies, chart of accounts etc. (Gartner, 2019, Toolkit).

The knowledge and skills required to navigate internal and external systems to locate, access, organize, protect and store data related to the organization's needs (Statistics Canada, 2020).

VAULTIS, short for data that is visible, accessible, understandable, linked, trustworthy, interoperable and secure. (Houston, AMCOM, 2021)

Heeley & Wilkinson, 2018; Nancy Law, David Woo, Jimmy de la Torre, Gary Wong, UNESCO Institute for Statistics, 2018; Open Data Institute, 2020; Duncan, et al., 2021; Gartner, 2019; Learn2Analyze, 2017; Ridsdate, et al., 2015; Databilities, 2020; Wolff, et al., 2016; Grillenberger & Romeike, 2018; Gummer & Mandinach, 2015; Houston, 2022;

Data Manipulation
Manipulating, processing, cleansing and combining data for further analysis or use. Automation of complex manipulation on large data volumes... covers reformatting, cleansing and combining of data from different sources for further analysis, storage or use. This includes simple processes to check and transform data, through to automating complex manipulation of large data volumes. This excludes analysis, in-depth domain knowledge and ongoing management of datasets (Heeley & Wilkinson, 2018).
Data Modeling or Architecture

The knowledge and skills required to apply advanced statistical and analytic techniques and tools (e.g., regression, machine learning, data mining) to perform data exploration and build accurate, valid and efficient modelling solutions that can be used to find relationships between data and make predictions about data (Statistics Canada, 2020).

Data Policy

A data policy contains a set of rules, principles, and guidelines that provide a framework for different areas of data management throughout the enterprise, including but not limited to data governance, data quality, and data architecture. (Osthus)

A data policy enables an organization to consistently address the broad range of potential developments and scenarios that may arise related to its creation, processing, use, and sharing of digital data.

Data Preservation and Reuse

Assesses requirements for preservation, assesses methods and tools for data preservation, preserves data (Ridsdale, et al., 2015).

Data preservation is the act of conserving and maintaining both the safety and integrity of data. Preservation is done through formal activities that are governed by policies, regulations and strategies directed towards protecting and prolonging the existence and authenticity of data and its metadata. The main goal of data preservation is to protect data from being lost or destroyed and to contribute to the reuse and progression of the data. (Wikipedia)

Data Quality

The knowledge and skills required to critically assess data sources to ensure they meet the needs of an organization. This includes identifying errors or problems and taking action to correct them. This also includes awareness of organizational policies, procedures and standards to ensure good quality data (Statistics Canada, 2020).

Data quality is one of the cornerstones of the data-intensive paradigm of scientific research that is determined by multiple factors. The first one is trust, which is complex in itself. The elements of trust include the lineage, version and error rate of data and the fact that they are understood and acceptable (Buckland, 2011).

Cognitive authority, which has two levels. At an operational level, cognitive authority is the extent to which users think that they can trust the information. On a more general level, cognitive authority refers to influences that a user would recognize as proper because the information therein is thought to be credible and worthy of belief (Rieh, 2002).
Authenticity, which measures the extent to which the data is judged to represent the proper ways of conducting scientific research, including the reliability of the instruments used to gather the data, the soundness of underlying theoretical frameworks, the completeness, accuracy, and validity of the data. In order to evaluate authenticity, the data must be understandable (Koltay, 2015).

Australian Public Service Commission, 2021; Apolitical, 2021; Ridsdale, et al., 2015; Mulvaney, et al., 2022; Databilities, 2020; Wolff, et al., 2016; Sternekopf & Mueller, 2018; Grillenberger & Romeike, 2018; Gummer & Mandinach, 2015; Australian Public Service Commission, 2021; elearning Curve, 2022; Koltay, 2022; Statistics Canada, 2020;

Data Requirements
The ability to understand and prioritise user needs; and identify how data can be efficiently integrated into processes... By understanding the processes and data with which they work, a data specialist can effectively improve the efficiency and effectiveness of their work. To do this they need to understand the dependencies of their parts of the business and the importance of clarity in understanding data and other problems. (Heeley & Wilkinson, 2018)

Heeley & Wilkinson, 2018; Apolitical, 2021;

Data Science and Machine Learning
Includes the following:

Natural language processing: NLP is a way for computers to analyze, understand and derive meaning from human language in a smart and useful way. NLP is a subset of artificial intelligence (AI). Examples: Sentiment analysis, speech-to-text recognition, automatic summarization and language translation.

Natural language generation: NLG automates the creation of language or content from data inputs. Examples: Weather reports, form letters and financial reports.

Artificial intelligence: AI is a set of related technologies that seems to emulate human thinking and action by learning, coming to its own conclusions and enhancing human cognitive performance (also known as cognitive computing) or replacing people on execution of nonroutine tasks.

Machine learning: ML algorithms are composed of many technologies (such as deep learning, neural networks and natural-language processing), used in unsupervised and supervised learning, that operate guided by lessons from existing information inputs. Example use cases: Autonomous vehicles; automatic speech recognition and generation; detecting novel concepts and abstractions.

Duncan, et al., 2021; Gartner, 2019;

Data Security
Individual is aware of the main policies around data security, sharing and licensing. This includes awareness of the Data Protection Act and the appropriate action to take in the instance of a suspected or actual breach (Heeley & Wilkinson, 2018).

Processes are in place to ensure confidentiality, integrity, and availability of data. Only data that is necessary is collected/used. Consistent, companywide policies for secure and ethically sound data handling are constantly redefined and updated (Statistics Canada, 2020).
Data Standards

Generic procedures and standards on how to handle data are formalized and widespread, and benefits are understood at all levels of the organization (Statistics Canada, 2020).

Make use of open data standards to build technology that’s easier to expand, upgrade and use with other technologies; meet API technical and data standards to help deliver better services (DSA, 2022)

Data Storytelling

A combination of data visualization, narrative (the plotline) and context (the surrounding situation/scenario). (Gartner, 2019, Toolkit) [More]

The knowledge and skills required to describe key points of interest in statistical information (i.e., data that has been analyzed). This includes identifying the desired outcome of the presentation; identifying the audience’s needs and level of familiarity with the subject; establishing the context; and selecting effective visualizations." (Statistics Canada, 2020).

Data Strategy or Culture

Example: "Meetings are data-driven and analytically rich. Metrics and analytics are at the forefront of business decision-making, not an afterthought to validate an opinion. Data is trusted, and context of data is understood and appreciated. We discuss outcomes and moments powered by data and insight." (Gartner, 2019, Toolkit)

A data culture is a "learning environment within a school or district that includes attitudes, values, goals, norms of behavior and practices, accompanied by an explicit vision for data use by leadership for the importance and power that data can bring to the decision-making process. (Hamilton et al., 2009, p. 46) (Mandinach, 2012)

The rules of using and caring for data, offered by Goodman (2014), can guide researchers in their effort to ensure that their data and analyzes continue to be of value. (Cited by Koltay, 2015)

Data Systems and Tools

The knowledge and skills required to use appropriate software, tools, and processes to gather, organize, analyze, visualize and manage data (Statistics Canada, 2020).
Many different types of databases exist. The most common types in use today include flat files, spreadsheets, relational databases, multi-dimensional databases, and NoSQL databases. Data literate individuals need to be capable of working with databases of many different kinds (Wells, 2020)

Tools include:

- Spreadsheets (such as Excel and Open Office) – essential tools for quickly scanning and checking data as well as providing simple data manipulation and combination.
- Geographic Information Systems (such as QGIS and ESRI’s Arc toolset) – tools for holding, managing and integrating spatial information.
- Databases (such as Access, SQL Server, Oracle, PostGres, PostGIS) – powerful tools for manipulating and querying larger volumes of data.
- Database management tools (such as Toad, SQL Developer) – provides clear access to database structure for exploring and querying databases (Heeley & Wilkinson, 2018).

Australian Public Service Commission, 2021; Statistics Canada, 2020; Open Data Institute, 2020; Ridsdate, et al., 2015; Wolff, et al., 2016; Grillenberger & Romeike, 2018; Gummer & Mandinach, 2015; Australian Public Service Commission, 2021; Wells, 2022;

Data Valuation
Understanding the business value of data scientists, data engineers and business analysts and the importance of meeting them frequently and productively. ... understanding how data adds value to business decisions. (Gartner, 2019, Toolkit)

Gartner, 2019; Australian Public Service Commission, 2021;

Data Visualization
Use of dashboards (e.g., dials, gauges, charts and maps), infographics, flow charts, decision trees, slide show/series (Gartner, 2019).

The knowledge and skills required to create meaningful tables, charts and graphics to visually present data. This also includes evaluating the effectiveness of the visual representation (i.e., using the right chart) while ensuring accuracy to avoid misrepresentation (Statistics Canada, 2020).

Australian Public Service Commission, 2021; Heeley & Wilkinson, 2018; Statistics Canada, 2020; Open Data Institute, 2020; Apolitical, 2021; Ridsdate, et al., 2015; Mulvaney, et al., 2022; Databilities, 2020; Sternkopf & Mueller, 2018; Grillenberger & Romeike, 2018; Gummer & Mandinach, 2015; Australian Public Service Commission, 2021; Wells, 2022; Statistics Canada, 2020;

Data-Informed Decision-Making
Examples: Leadership presentations include: key performance metrics; related analysis, visualization and storytelling; roles and moments affected are described and data-driven actions taken; explanation of results, business impact and outcomes achieved. (Gartner, 2019, Toolkit)

Cramer, Little & McHatton (2015) describe a recursive five-step data-based decision-making model: goal identification, data collection, data reflection, identifying areas for improvement, and dissemination. DDDM is not just about the numbers or the data. It is about making actionable the data by transforming them into usable knowledge (Mandinach, 2012).
The knowledge and skills required to use data to help in the decision-making and policy making process. This includes thinking critically when working with data; formulating appropriate business questions; identifying appropriate datasets; deciding on measurement priorities; prioritizing information garnered from data; converting data into actionable information; and weighing the merit and impact of possible solutions and decisions (Statistics Canada, 2020). Also the knowledge and skills required to evaluate a range of data sources and evidence in order to make decisions and take actions. This can include monitoring and evaluating the effectiveness of policies and programs (Statistics Canada, 2020).

Australian Public Service Commission, 2021; Statistics Canada, 2020; Open Data Institute, 2020; Duncan, et al., 2021; Gartner, 2019; Learn2Analyze, 2017; Ridsdate, et al., 2015; Databilities, 2020; Wolff, et al., 2016; Gummer & Mandinach, 2015; Cramer, et al., 2020; Swan, et al., 2011; Mandinach, 2012; Wells, 2022;

Generate Data

"Generate data is another subcomponent of the 'use data' component, and it includes 'understand assessment', which expands into understand statistics and psychometrics, and 'use formative and summative assessments.'" (Gummer & Mandinach, 2015)

Gummer & Mandinach, 2015;

Identifying Problems With Data

Mandinach & Gummer (2016) identify six dispositions: belief that all students can learn; belief in data/think critically; belief that improvement in education requires a continuous inquiry cycle; ethical use of data, including the protection of privacy and confidentiality of data; collaboration (vertically and horizontally); and communication skills with multiple audiences.

Bocala & Boudett (2015) identify three 'habits of mind': shared commitment to action, assessment, & adjustment; intentional collaboration; and relentless focus on the evidence.

Edith Gummer, Ellen B. Mandinach, Teaching and Teacher Education, 2016; Candice Bocala, Kathryn Parker Boudett, Teachers College Record, ; Elizabeth H. Schultheis, Melissa K. Kjelvik, The American Biology Teacher, 2020;

Inquiry Process

In the Inquiry Process "the components identify problems and frame questions lack subcomponents and elements... subelements (include) planning, guiding, designing, adjusting, differentiating, and individualizing instruction associated with the element." (Gummer & Mandinach, 2015).

Identifying and implementing change to create efficiencies and new opportunities by making existing processes, systems, tools and products better and/or creating new ones. (e.g.) Can identify deficiencies in current processes/systems and tools/ products, gain the required approval to make changes, and lead the implementation of those changes (APOS, 2021).

Wolff, et al., 2016; Gummer & Mandinach, 2015; Australian Public Service Commission, 2021; Wells, 2022;

Plan, Implement and Monitor

In order to identify their own knowledge gap in the first place, they must have an understanding of how to plan for data collection, know how data can be identified and obtained and conceive how this data might eventually provide an answer to their initial question (Wolff, et al., 2016).
Present Data Verbally

Assess the desired outcome(s) for presenting the data, assesses audience needs and familiarity with subject(s), plans the appropriate meeting or presentation type, utilizes meaningful tables and visualizations to communicate data, presents arguments and/or outcomes clearly and coherently (Ridsdale, 2015).

Databilities, 2020; Sternkopf & Mueller, 2018; Ridsdate, et al., 2015;

Statistics and Critical Reasoning

Become critical consumers of statistically-based results reported in popular media, recognizing whether reported results reasonably follow from the study and analysis conducted; recognize questions for which the investigative process in statistics would be useful and should be able to answer questions using the investigative; produce graphical displays and numerical summaries and interpret what graphs do and do not reveal; recognize and be able to explain the central role of variability in the field; recognize and be able to explain the central role of randomness in designing studies and drawing conclusions; gain experience with how statistical models, including multivariable (GAISE, 2020).

Descriptive analysis develops statistics to illustrate the shape of the data, describing characteristics such as the distribution of values (Wells, 2022).

Know – understand – be able to interpret statistics commonly used with educational data (e.g., randomness, central tendencies, mean, standard deviation, significance) (Learn2Analyze, 2017).

Using or Innovating With Data

Example: "Data is a prevalent element of ideation and how we explore new business ideas. In our meetings, it is common to hear: "What if we had access to that data? Could others leverage this data? Can we blend this data with that data? Who else might benefit from this data? What insights does this data provide? What if we share this data, and are we allowed to? What data is available from our partners?"” (Gartner, 2019, Toolkit)

Nancy Law, David Woo, Jimmy de la Torre, Gary Wong, UNESCO Institute for Statistics, 2018; Open Data Institute, 2020; Gartner, 2019;

Appendix 3 – Assessment Frameworks

Guidelines for Assessment and Instruction in Statistics Education (GAISE)

Rasch Model

“Rasch models make it possible to test the hypothesis that the particular challenges posed in a curriculum and on a test coherently represent the infinite population of all possible challenges in that domain.” - Wikipedia

Essay Test

Data Literacy Assessment Process

Appendix 4 – Teaching Frameworks

Data Wise Project

Literacy Data-Driven Decisions (L3D)

Guidelines for Assessment and Instruction in Statistics Education (GAISE)

Case-Based Teaching Method

Simulation

Teaching for Statistical Literacy Hierarchy

Distinguishes between critical, widely used, and idiosyncratic concepts of statistical literacy.

Datastorming

"where data is materialized into a set of tangible artifacts to support design student’s hands-on thinking [16] and collaboration for creating new design concepts."

Authentic Data

Data Literacy Program

Appendix 5 – Global Data Literacy Initiatives

Government Initiatives

International

UNESCO

- Published by the UNESCO Institute for Statistics, is part of the Global Alliance to Monitor Learning (GAML), a Digital Literacy Global Framework was developed, http://uis.unesco.org/en/blog/digital-literacy-skills-framework-measure

OECD

- OCED has a website on skills development at https://www.oecd.org/skills/R
- Although not focused on Data Literacy, this report has some policy on dealing with stakeholders: [Strengthening the Governance of Skills System: a self-assessment tool](https://www.oecd.org/skills/centre-for-skills/Strengthening_the_Governance_of_Skills_Systems_Self_Assessment_Tool.pdf)

The World Bank
• The World Bank has a Data Use and Literacy Program, “which delivers a range of activities to build capacity for data literacy and data use; enable data-driven decision-making; and democratize participation in the data revolution across low and middle income countries”.

Australia

Government of Australia

Launch of the Data Capability Framework, October, 2021

Data Fluency

Queensland State Schools

Canada

NSERC Award for 2020-2021 – Computing tools for learning and teaching data literacy –

• Fanny Chevalier, University of Toronto, Computer Science - $39,000 (Discover Grants Program – Individual) Award Summary - Data literacy is a fundamental part of evidence-informed reasoning ..

NSERC Award for 2020-2021 – From Personal Data visualization to Data –Empowered Citizens

• Charles Perin, University of Victoria, Computer Science - $33,000 (Discover Grants Program – Individual)

• Award Summary - This research focuses on empowering citizens with data through promoting visualization of personal data.

Statistics Canada
• Data literacy competencies at https://www.statcan.gc.ca/en/wtc/data-literacy/competencies
• Data journey: The data journey represents the key stages of the data process starting with finding and exploring data through to telling the data story. https://www.statcan.gc.ca/en/wtc/data-literacy/journey

Europe

European Commission’s comprehensive and widely used framework for digital skills. (2016)

• Gallery of Implementations (30 case studies and 20 tools) https://ec.europa.eu/jrc/en/digcomp/implementation

DataBuzz Project

• DataBuzz project is a high-tech, mobile educational lab, which is housed in a 13 meter electric bus. Its specific goal is to increase the data literacy of different segments of society in the Brussels region through inclusive and participatory games and workshops.
• https://digitalcommons.uri.edu/jmle/vol12/iss3/9/ and https://doi.org/10.23860/JMLE-2020-12-3-9

SELFIE

• SELFIE, has been developed with reference to an extension of DigComp for education institutions. It is targeted at school leaders, teachers and students to help schools identify digital literacy strengths and weaknesses and build a school improvement strategy. It has gone through a 2017 pilot phase with 67,000 users and its aim, included in the European Union’s Digital Education Action Plan, is to reach 1 million users by the end of 2019.
• https://ec.europa.eu/education/schools-go-digital/how-selfie-works_en

Data.Europa Academy (was European Data Portal)

• This is an open data portal for Europe, but it also includes some data training webinars, reading, videos and e-learning on topics such as techniques and technologies in the field of data visualization, understanding geo-information, understanding APIs, cleaning data, etc.

France

PIX

• Pix is an online platform for assessment and certification of DigComp skills, managed by the French Ministry of National Education, Higher Education and Research
Germany

Hochschulforum Digitalisierung (HFD)

- The Hochschulforum Digitalisierung (HFD) is sponsored by Germany’s Federal Ministry of Education and Research (BMBF). https://hochschulforumdigitalisierung.de/en
- https://hochschulforumdigitalisierung.de/sites/default/files/dateien/HFD_AP_Nr_53_Data_Literacy_Framework.pdf

U.K.

- Open Data Institute - Data literacy and the UK government - https://docs.google.com/document/d/19acuJFOnJEWzh21ahfgCYqCJ0KZo837mA2FAaWJqFPU/edit#

United States

Air Force USAF

- A partnership with the Air Force Institute of Technology piloting an online graduate certificate program in data science
- Partnering with AFWERX. They virtually brought together groups of air and space professionals and worked on a single problem set, specifically, on the C-17 scheduling. That datathon offered a 92% scheduling accuracy rate using automated capabilities, using data sets.

Department of Health and Human Services (HHS)

Federal Government

Federal Cyber Reskilling Academy, CIO Council

- In 2019, the federal CIO Council launched the Federal Cyber Reskilling Academy

Federal Data Science Training Program

- The Office of Management and Budget launched the federal Data Science Training Program in the fall of 2020 to retrain workers to use new skills including data mining, data visualization, statistics, and enhanced presentation skills.

Wisconsin Department of Public Instruction

- Wisconsin Department of Public Instruction provides an example instruction for teachers in the school system

Industry Initiatives

Data Literacy Foundation

- Data Literacy Foundation provides a Data Literacy tool kit,
- (New York, New York)
- EDLP – Enterprise Data Literacy Program framework
 - Data Literates podcast https://dataliteracyfoundation.org/

Data Literacy Project

- Data Literacy Project launched by Qlik includes founding partners Accenture, Cognizant, Experian, Pluralsight, the Chartered Institute of Marketing, and Data to the People
- https://thedataliteracyproject.org/

QuantHub

- QuantHub, a data skills platform, has a Roadmap for Creating a Data Literacy Program with additional articles and guides on the topic.
- https://quanthub.com/data-literacy-program/

SAS
• SAS has an education Outreach entitled Building a data literate future which includes apps for school age children.

State of Open Data

• State of Open Data has included a chapter on Issues on Open Data – Data Literacy
 • https://www.stateofopendata.od4d.net/chapters/issues/data-literacy.html

Sigma

• Sigma has created a step by step program on developing data literacy.

Sport Scientist Canada

• Sport Scientist Canada has a 60-minute online course, to learn about and apply data science concepts and skills related to the following topics:
 • Learn more at https://www.sportscientistcanada.ca/en-CA/Programs/Data-Science-Module

Tableau

• Tableau is providing free data skills training for individuals and organizations, a 5 hour e-learning program that helps anyone learn foundational data skills– announced on Oct. 14, 2020.
 • Data Literacy for ALL https://www.tableau.com/learn/data-literacy

Universities Initiatives

International

DataPop Alliance

• Data-Pop Alliance is a collaborative laboratory created by the Harvard Humanitarian Initiative, MIT Connection Science, and Overseas Development Institute.
 • https://datapopalliance.org/dataliteracy/workshops/
 • Also have an open learning hub at https://datapopalliance.org/dataliteracy/open-learning-hub/
United States

University of Georgia

- The Data Literacy Committee proposal. https://ovpi.uga.edu/initiatives/data-literacy/

Michigan State University - Data Literacy for Community Development Webinar Series

- MSU Extension’s Data Literacy for Community Development Webinar Series is an ongoing professional development opportunity to train community leaders in data collection, visualization and processing using open source applications that are widely available to the public.

MIT Management Sloan School

- This website has links to many informative articles on data literacy.

Rutgers University

- This website has a comprehensive list of courses and workshops at Rutgers and elsewhere.
- https://libguides.rutgers.edu/data_literacy/online_courses